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Abstract

Let G = C2 × C2 be the Klein four group. Partial computations of the RO(G)-

graded homotopy Mackey functors πFHF2 of the equivariant Eilenberg-MacLane

spectrum corresponding to the constant Mackey functor F2 can be found in the

literature. In particular, Holler-Kriz computed in [2] the complete additive struc-

ture of the top levels πGFHF2 of the Mackey functors, and Guillou-Yarnall in [3]

computed the homotopy Mackey functors graded by multiples of the regular rep-

resentation ρ, namely the integer graded homotopy Mackey functors π∗(Σ
kρHF2)

for each k ∈ Z. In this thesis, we discuss the multiplicative structure of the top

level πGFHF2 and moreover give a complete algebraic description of the homotopy

Mackey functors making up πFHF2 graded by all of RO(G). Finally, we use the

Bockstein spectral sequence to compute the portion of πGFHZ graded by actual

representations using our algebraic description of πGFHF2.
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Chapter 1

Introduction

A longstanding problem in algebraic topology is that of determining values of

n = 2k − 2 such that there exists an n-dimensional framed manifold with non-

zero Kervaire invariant (necessarily then equal to one), called the Kervaire in-

variant one problem. This problem has now been largely settled, and we know

that there exist framed n-manifolds with non-zero Kervaire invariant only for

n = 2, 6, 14, 30, 62 and possibly 162, which is the only open case. In particular,

Hill, Hopkins and Ravenel proved in the famous paper [1] that no such framed

n-manifolds exist for n ≥ 254 (i.e. for k ≥ 8), and in doing so made vast and

groundbreaking developments in equivariant stable homotopy theory.

In equivariant stable homotopy theory, we are interested in the presence of

actions on our spaces and spectra by a finite group G, and we call these G-spaces

and G-spectra. In doing so, the role of abelian groups in non-equivariant sta-

ble homotopy theory are replaced by Mackey functors which contain an abelian

group for each subgroup of G. That is, we want to assign algebraic invariants

that captures information about how our spaces or spectra behave under the

action of each subgroup of G and how these relate via so-called transfer and re-

striction maps. Furthermore, whilst in non-equivariant stable homotopy theory

these algebraic invariants are often graded over the integers Z, we can grade our

equivariant algebraic invariants over the orthogonal representation ring RO(G).

If X is G-spectrum, then the algebraic invariants of primary interest in this thesis

are its RO(G)-graded homotopy Mackey functors πF(X).

If X is the equivariant Eilenberg-MacLane spectrum HM corresponding to a

Mackey functor M , the homotopy Mackey functors πFHM can be thought of as

the equivariant homology of a point with coefficients in M . These computations

are non-trivial, even for the cyclic group C2 of order two. The equivariant homol-
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2 CHAPTER 1. INTRODUCTION

ogy of a point for the cyclic group C8 with coefficients in the constant Mackey

functor Z was used in Hill, Hopkins and Ravenel’s solution to the Kervaire in-

variant one problem. Other computations of the equivariant homology of a point

for various finite groups have been done recently, for example in [2], [14], [20] and

[21].

The main goal of this thesis is to completely determine the RO(G)-graded

homotopy Mackey functors πFHF2 for the Klein four group G = C2×C2, where

HF2 is the equivariant Eilenberg-MacLane spectrum corresponding to the con-

stant Mackey functor F2. Here F2 denotes the field with two elements, and

one can think of the G-spectrum HF2 as a G-equivariant analogue of the non-

equivariant Eilenberg-MacLane spectrum HF2 representing singular homology

and cohomology with coefficients in F2. The additive structure of πGFHF2, where

πGFHF2 denotes the abelian groups in the homotopy Mackey functors πFHF2

corresponding to the group G = C2 × C2 itself, was computed recently by Holler

and Kriz in [2]. We use the word additive here as the G-spectrum HF2 is a com-

mutative ring spectrum, which implies that πFHF2 is not only an RO(G)-graded

Mackey functor but also an RO(G)-graded Green functor, where a Green functor

can be thought of as a multiplicative analogue of a Mackey functor. In particu-

lar, we have that πGFHF2 (and moreover πHFHF2 for each subgroup H of G) is a

commutative ring, and a description of the ring structure does not appear in the

literature.

In Chapter 3, we discuss the analogue of the above problem for the cyclic

group G = C2 of order two. The RO(C2)-graded Green functor structure of

πFHF2 is known, where now F2 is the constant C2-Mackey functor associated to

F2. For example, the Mackey functor structure of πFHF2 can be found in [3,

Section 3.1] and the ring structure of πC2
F HF2 is described in [17, Section 2] and

[4, Section 6]. The portion of πC2
F HF2 corresponding to actual representations

in RO(C2), which in the literature is called the positive cone, is given by the

polynomial ring F2[x, y] on two particular classes x and y. The ring structure is

more complicated for virtual representations, called the negative cone, whereby

there exists a class θ that is divisible (in a formal sense) by monomials in F2[x, y].

A picture of this description of the ring structure is given in Figure 3.2.

Returning to the group G = C2 × C2, we also call the portion of πGFHF2

corresponding to actual representations by the positive cone. However, the group

C2 × C2 has three non-trivial irreducible real representations (as opposed to one

as is the case for C2) which we denote by σ1, σ2 and σ3, and so as an abelian

group we have that RO(G) ∼= Z{1, σ1, σ2, σ3}. We therefore break up the portion
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of πGFHF2 corresponding to virtual representations into the negative cone, which

consists of elements in RO(G) such that the coefficient of each σi is negative, as

well as six mixed cones where there is a mix of actual and virtual representations,

i.e. at least one of the coefficients of the σi is positive and at least one of the

coefficients is negative. In Chapter 4, we give a description of the multiplicative

structure of πGFHF2 and give a closed-form answer in the positive cone.

Theorem 1.1. The positive cone in πGFHF2 is given by the quotient ring

F2[x1, y1, x2, y2, x3, y3]

(x1y2y3 + y1x2y3 + y1y2x3)
.

Here the classes xi and yi for i ∈ {1, 2, 3} are defined in Section 4.4, and

can be thought of as generating three copies of the positive cone in πC2
F HF2

corresponding to the three C2-subgroups of G, which we denote by H1, H2 and

H3. In fact, as we discuss in Section 4.6, the homology in the negative and mixed

cones can be expressed in terms of the polynomial f = x1y2y3 + y1x2y3 + y1y2x3.

Namely, we can view the quotient ring of Theorem 1.1 as the homology of the

chain complex

F2[x1, y1, x2, y2, x3, y3]{Ξ} f−→ F2[x1, y1, x2, y2, x3, y3]{1}

concentrated in two degrees, where this map sends

m · Ξ 7→ (x1y2y3 + y1x2y3 + y1y2x3)m · 1

for m a monomial in F2[x1, y1, x2, y2, x3, y3], and this map is injective but not

surjective. The negative and mixed cones can be similarly expressed as the ho-

mology of a single map given by multiplication by the polynomial f , where in

the negative cone the map is surjective but not injective and in the mixed cones

is neither injective nor surjective.

This algebraic description of the homology πGFHF2 can be extended to give

an algebraic description of the complete Mackey functor structure πFHF2 as we

discuss in Section 4.7. Partial computations of the homotopy Mackey functors

of HF2 were done by Guillou and Yarnall in [3] in the context of understanding

the slice spectral sequence for ΣnHF2 where n ≥ 0. Namely, they computed the

homotopy Mackey functors graded by multiples of the regular representation of

G. The slice spectral sequence was a key tool in the Hill, Hopkins and Ravenel

solution to the Kervaire invariant one problem, and the computation of all the

homotopy Mackey functors in this thesis is useful when analysing the slice spec-

tral sequence for ΣVHF2 given an arbitrary V ∈ RO(G). The Mackey functor
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structure in the positive cone has a particularly nice form, as is the case for the

ring structure of πGFHF2.

Theorem 1.2. The Mackey functor structure of the positive cone in πFHF2 is

given by the Mackey functor of RO(G)-graded rings

F2[x1,y1,x2,y2,x3,y3]
(x1y2y3+y1x2y3+y1y2x3)

((��vv
F2[y1,x2,y2,x3,y3]

(x2y3+y2x3)

((

F2[x1,y1,y2,x3,y3]
(x1y3+y1x3)

��

F2[x1,y1,x2,y2,y3]
(x1y2+y1x2)

,

vv
F2[y1, y2, y3]

where each restriction map is the identity on a generator of the domain that is also

a generator of the codomain and is zero on a generator otherwise. The transfer

maps are always zero.

Many of the computations in Chapter 4 can be adapted to analysing πFHZ
where Z is the constant Mackey functor associated to the integers Z. Indeed,

we construct an explicit chain complex of Mackey functors in Section 4.2 whose

homology at each tridegree gives us πFHF2, and an analogous chain complex can

be constructed with integer coefficients. We discuss this briefly in Section 4.8 in

the context of the Bockstein spectral sequence and how it can be used to deduce

πFHZ from πFHF2, at least in the positive cone. The result with integer coef-

ficients is not in the literature, however it can be found for the group C2 in [22,

Theorem 2.8]. The collapsing of the Bockstein spectral sequence to the E2-page

that we prove in Section 4.8 has been used by McCall [15] in understanding the

slice spectral sequence for C2-equivariant Real K-theory.

The structure of the thesis is as follows. In Chapter 2, we discuss the neces-

sary background in equivariant stable homotopy theory needed in later chapters,

including the definition of G-spectra, the notion of Mackey functors and Green

functors as well as the concept of the homotopy Mackey functors of a G-spectrum.

In Chapter 3, we compute the known RO(C2)-graded Green functor structure of

πFHF2 and discuss evident symmetries in the result which can be explained using

Anderson duality. The heart of the thesis is Chapter 4, where we generalise the

results and methods of Chapter 3 to the Klein four group.



Chapter 2

Background

In this chapter, we introduce some basic concepts of equivariant stable homotopy

theory that will be assumed in later chapters. Furthermore, we will be working

with an arbitrary finite group G throughout this chapter, even though we will be

focusing on the cyclic group C2 of order two and the Klein four-group C2 × C2

in Chapters 3 and 4. See [24] and [19] for a thorough introduction to equivariant

stable homotopy theory.

2.1 The category of orthogonal G-spectra

Let G be an arbitrary finite group, which we fix throughout this chapter. Further-

more, when we use the word space we mean a compactly generated weak Hausdorff

topological space. Our goal in this section is to introduce the fundamental objects

in equivariant stable homotopy theory, namely orthogonal G-spectra. The first

step however is to understand the notion of G-spaces.

Definition 2.1. A G-space is a space X together with an action of the group

G. A G-equivariant map (or simply equivariant map) f : X → Y of G-spaces is

a map of the underlying spaces (i.e. a continuous map) that commutes with the

G-actions on X and Y . That is, we require that the diagram

X
g· //

f

��

X

f

��
Y

g· // Y

commutes for every g ∈ G. A pointed G-space is a G-space equipped with a

basepoint fixed by the action of G.

5



6 CHAPTER 2. BACKGROUND

Any G-space X can be made into a pointed G-space by adding in a disjoint

basepoint which we define to be fixed by the G-action, and we denote the resulting

pointed G-space by X+. Now, we define the category T opG to have G-spaces as its

objects and equivariant maps as its morphisms. Similarly, we define the category

T G to have pointed G-spaces as its objects and equivariant maps (which preserve

the basepoints) as its morphisms. However, we define the category TG to have

pointed G-spaces as its objects but continuous maps as its morphisms, i.e. we

allow for non-equivariant maps between G-spaces in the category TG. Both T G

and TG are closed symmetric monoidal categories under smash product with the

0-sphere S0 as the unit (with trivial G-action). Note here that the G-action on

the smash product of pointed G-spaces is induced by the diagonal G-action.

Furthermore, notice that the category TG is enriched over T G. Indeed, each

morphism object TG(X, Y ) in TG is the space of all continuous maps f : X → Y

and we can equip this space with the conjugate G-action (g ·f)(x) = gf(g−1x), so

we can identify TG(X, Y ) as an object of T G. Furthermore, a simple calculation

shows that composition

TG(Y, Z) ∧ TG(X, Y )→ TG(X,Z)

in TG is equivariant with respect to the conjugate G-action. We have that T G is a

subcategory of TG, and thus the category TG is enriched over itself. The category

T G is enriched over the category T of pointed spaces with continuous maps

preserving the basepoints, and the morphism objects T G(X, Y ) in the category

T G are precisely the G-fixed points TG(X, Y )G of the morphism objects in TG
following from the definition of the conjugate G-action.

In order to define orthogonal G-spectra, we need to understand the Mandell-

May category JG. First, recall that a finite-dimensional real representation V

of G is called orthogonal if the underlying finite-dimensional real vector space

V is also an inner product space, and each g ∈ G acts on V as an element of

the group O(V ) of orthogonal endomorphisms of V , i.e. endomorphisms of V

that preserve the inner product. Now, given finite-dimensional real orthogonal

G-representations V and W , let O(V,W ) denote the space of orthogonal (not

necessarily equivariant) embeddings V → W . Note that G acts on O(V,W ) via

the conjugate action. Then, consider the space

{(f, w) ∈ O(V,W )×W : w ∈ f(V )⊥ ⊂ W},

which is in fact a vector bundle on O(V,W ) under the projection map onto the

first component.
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Definition 2.2. The objects of the Mandell-May category JG are finite-dimensional

real orthogonal G-representations V . Given two objects V and W in the category

JG, we define the morphism set JG(V,W ) to be the Thom space of the above

vector bundle on O(V,W ).

Recall that the Thom space of a vector bundle is the quotient space obtained

by taking the one-point compactification of each of the fibres and identifying all

of the points-at-infinity. That is, as a set we have that

JG(V,W ) =
∨

f∈O(V,W )

Sf(V )⊥ .

The Mandell-May category JG is enriched over T G. Indeed, each JG(V,W ) is

a pointed G-space with basepoint the point-at-infinity and has G-action induced

by the action of G on each orthogonal complement f(V )⊥ ⊂ W for f ∈ O(V,W ).

Furthermore, the map

JG(V,W ) ∧JG(U, V )→JG(U,W )

induced by composition of orthogonal embeddings is G-equivariant.

Example 2.3. If V = 0, then the Thom space JG(V,W ) is the representation

sphere SW , i.e. the one-point compactification of W with G acting trivially on

the point-at-infinity, which follows since there is only one embedding 0→ W and

the orthogonal complement of the image of this embedding is W .

Example 2.4. If the dimension of V is greater than the dimension of W as

finite-dimensional real vector spaces, then O(V,W ) is empty so the Thom space

JG(V,W ) is a point, i.e. only consists of the point-at-infinity. If the dimensions

of V and W are equal, then the embedding space is O(V ) and the orthogonal

complement of any element of O(V ) is zero. Hence, the Thom space in this case

is O(V )+ with G acting on O(V ) via the conjugate action.

Now that we understand the Mandell-May category JG, we are ready to

define orthogonal G-spectra.

Definition 2.5. The category SpG of orthogonal G-spectra is the enriched functor

category [JG, T G]. That is, an orthogonal G-spectrum X is an enriched functor

JG → T G.
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By Definition 2.5, we can therefore think of an orthogonal G-spectrum X as

consisting of a pointed G-space XV for each finite-dimensional real orthogonal

G-representation V , together with structure maps

JG(V,W ) ∧XV → XW

which we require to be equivariant, i.e. that the structure maps are morphisms

in the category T G. Note that the morphisms in the category SpG are natural

transformations of enriched functors JG → T G. We will often drop the word

‘orthogonal’ and refer to objects of SpG simply as G-spectra. Furthermore, mor-

phisms in the category SpG will be called equivariant maps of G-spectra.

Definition 2.6. If K is a pointed G-space, then its suspension G-spectrum Σ∞K

is defined by

(Σ∞K)V = ΣVK

for all objects V in JG, where ΣVK := SV ∧K.

We can also more generally take the smash product of a pointed G-space with

a G-spectrum in the sense of Definition 2.7.

Definition 2.7. Let K be a pointed G-space and X a G-spectrum. Then, their

smash product is the G-spectrum K ∧X defined by

(K ∧X)V = K ∧XV

for all objects V in JG.

Note that Definitions 2.6 and 2.7 are using that the category SpG = [JG, T G]

of G-spectra is tensored over T G, so an equivariant map f : K → L of pointed

G-spaces induces a map

f ∧X : K ∧X → L ∧X

of G-spectra for every G-spectrum X. We define the smash product of G-spectra

as follows.

Definition 2.8. Let X and Y be objects in SpG = [JG, T G]. Then, their

smash product X ∧ Y is defined to be the left Kan extension of the composite

∧ ◦ (X × Y ) of the product of the functors X and Y with the smash product
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on pointed G-spaces along the direct sum ⊕ of finite-dimensional real orthogonal

representations:

JG ×JG
X×Y //

⊕
''

T G × T G ∧ // T G88

X∧Y

JG

That is, the functor X ∧ Y is initial among functors Z : JG → T G with natural

transformations

∧ ◦ (X × Y ) =⇒ Z ◦ ⊕.

This definition is an example of Day convolution as given in [5].

Theorem 2.9. The category SpG of orthogonal G-spectra is a closed symmetric

monoidal category with respect to the smash product of Definition 2.8. The unit

for the smash product is the sphere spectrum S−0 defined by (S−0)V = JG(0, V ) =

SV .

Proof. This follows from the Day convolution theorem, using that JG is a small

symmetric monoidal category (with respect to direct sum) enriched over T G,

and T G is a cocomplete closed symmetric monoidal category with respect to the

smash product of pointed G-spaces.

Remark 2.10. The notation S−0 for the sphere spectrum as in the statement

of Theorem 2.9 was adopted by Hill, Hopkins and Ravenel to help distinguish

it from the ordinary sphere S0, which has previously also been used to denote

the sphere spectrum. More generally for an actual G-representation U we define

the G-spectrum S−U by (S−U)V = JG(U, V ) known as a virtual representation

sphere as we will see in Section 2.3.

2.2 Mackey and Green functors

In this section we introduce the concepts of Mackey functors and Green functors,

which will play a central role throughout later chapters. One may think of Mackey

functors as generalising the role that abelian groups play in non-equivariant stable

homotopy theory. For example, when computing singular (co)homology of a space

we take coefficients in some abelian group, whereas when we consider equivariant

(co)homology theories our coefficient abelian group becomes a coefficient Mackey
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functor. Informally, a G-Mackey functor consists of an abelian group for each

subgroup of G along with transfer and restriction maps between these abelian

groups.

We will give one of two equivalent definitions of a Mackey functor. Although

the definition that we will not present more closely resembles the above informal

notion of a Mackey functor, the definition that we do give will be more useful

when we define Green functors and the box product of Mackey functors, and is

also more elegant in that it defines a Mackey functor as indeed a single functor.

First, we need to define the Lindner category B+
G. Let FG denote the category

whose objects are finite G-sets and whose morphisms are equivariant maps.

Definition 2.11. The objects of the Lindner category B+
G are precisely the ob-

jects of FG, i.e. finite G-sets. However, a morphism from a finite G-set X to a

finite G-set Y in the category B+
G is an equivalence class of diagrams (which we

call spans) of the form X ← A → Y , where the maps A → X and A → Y are

morphisms in FG. Two such spans X ← A→ Y and X ← B → Y are defined to

be equivalent if there is an isomorphism A→ B in FG (i.e. a bijective equivariant

map) such that the diagram

A

��

|| !!
X bb Y==

B

commutes. The composite of two morphisms represented by the spans X ← A→
Y and Y ← B → Z is the equivalence class of the span X ← C → Z obtained

from the pullback diagram

C

}}
y

!!
A

|| !!

B

}} ""
X Y Z.

For all objects X and Y in B+
G, the morphism set B+

G(X, Y ) is an abelian

monoid under disjoint union, where the disjoint union of the morphisms repre-

sented by X ← A → Y and X ← B → Y is the equivalence class of the span

X ← AtB → Y with the evident maps AtB → X and AtB → Y . Note that

the zero object of the abelian monoid B+
G(X, Y ) is the equivalence class of the

span X ← ∅ → Y .
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Definition 2.12. The objects of the Burnside category BG are precisely the

objects of FG (and of B+
G). However, each morphism set BG(X, Y ) is the group

completion of the abelian monoid B+
G(X, Y ).

In particular, the Burnside category BG is enriched over the category Ab of

abelian groups. Now that we have constructed the Burnside category, we are

ready to define a Mackey functor.

Definition 2.13. A Mackey functor (or G-Mackey functor) is an additive functor

M : BG → Ab. The functor M being additive means that it is an enriched functor

over Ab and it sends disjoint unions of finite G-sets to direct sums of abelian

groups.

An equivalent definition of a Mackey functor as mentioned earlier is given in

[1, Definition 3.1]. The category Mack(G) of G-Mackey functors is an abelian

category with addition defined in terms of the addition on each level, i.e. on the

image M(X) of each finite G-set X. Note that we could have equivalently defined

a Mackey functor as a contravariant functor M : Bop
G → Ab since following from

how we defined morphisms in BG in terms of equivalence classes of spans we have

that Bop
G
∼= BG. We will always use an underline to denote a Mackey functor as

in Definition 2.13.

Since any finite G-set can be decomposed as a disjoint union of orbits of the

form G/H for H a subgroup of G and a Mackey functor sends disjoint unions

to direct sums, it suffices to know how a Mackey functor behaves on the full

subcategory OG of FG where OG is the orbit category of G with orbits G/H as

its objects.

Definition 2.14. Let M be a Mackey functor and let K and H be subgroups of

G with K ⊂ H ⊂ G. Then, the restriction map ResHK : M(G/H)→ M(G/K) is

the image under M of the morphism represented by the span

G/H ← G/K
id−→ G/K,

where G/K → G/H is the projection map. The transfer map TrHK : M(G/K)→
M(G/H) is the image under M of the morphism represented by the span

G/K
id←− G/K → G/H.

The Weyl group WG(H) acts on M(G/H) as follows, where we think of

WG(H) as the group of isomorphisms from G/H to itself in the category OG.
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Given an element γ : G/H → G/H in the Weyl group WG(H) and an element

x ∈ M(G/H), we define γ · x ∈ M(G/H) to be the image of x under the mor-

phism M(G/H) → M(G/H) obtained by applying M to the morphism in BG

represented by the span

G/H
γ←− G/H

id−→ G/H.

The Weyl group action on the levels of a Mackey functor is particularly useful as

we have a formula for the restriction of an element in the image of a transfer in

a Mackey functor in terms of this group action.

Proposition 2.15. Let H be a subgroup of G and let K be a normal subgroup of

H. Then, for each x ∈M(G/K) we have that

ResHK(TrHK(x)) =
∑

γ∈WK(H)

γ · x.

We now give two important examples of G-Mackey functors that will be used

extensively in later chapters.

Example 2.16. Let M be an abelian group. The constant Mackey functor M

associated to M is given by M(G/H) = M for all subgroups H of G. If K is a

subgroup of H, then the restriction map ResHK : M →M is the identity map and

the transfer map TrHK : M →M is multiplication by the index [H : K].

Example 2.17. Let M be a G-module. The fixed point Mackey functor M

associated to M is given by M(G/H) = MH for all subgroups H of G, where

MH is the (abelian) group of elements of M fixed by the action of H. If K is a

subgroup of H, then the restriction map ResHK : MH → MK is the inclusion of

fixed points, noting that indeed if x ∈ M is fixed by H then it is in particular

fixed by K ⊂ H. The transfer map TrHK : MK →MH is given by

TrHK(x) =
∑

h̄∈H/K

h · x,

which is independent of choice of representatives for cosets in H/K.

Notice that the constant Mackey functor associated to an abelian group is a

special case of a fixed point Mackey functor. Indeed, if M is an abelian group

then we can treat M as a G-module with trivial G-action. Then, the fixed point

Mackey functor associated to the G-module M is precisely the constant Mackey

functor associated to the abelian group M . Another important example is the

Burnside Mackey functor.
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Example 2.18. The Burnside Mackey functor AG is defined by AG(G/H) =

BG(G/G,G/H) for all subgroups H of G. Since we can ignore the left-hand map

in a span G/G← X → G/H, we can identify BG(G/G,G/H) as the group com-

pletion of the abelian monoid of isomorphism classes of finite G-sets over G/H,

i.e. equivariant maps from finite G-sets to G/H, under disjoint union. If K and H

are subgroups of G with K ⊂ H, then the transfer map TrHK : BG(G/G,G/K)→
BG(G/G,G/H) is given by composing maps X → G/K with the projection

G/K → G/H, and the restriction map ResHK : BG(G/G,G/H)→ BG(G/G,G/K)

is given by taking the pullback of a map X → G/H along the projection G/K →
G/H.

Remark 2.19. Since the category of finite G-sets over G/H is equivalent to the

category of finite H-sets, we have that AG(G/H) = A(H) where A(H) is the

Burnside ring of H, i.e. the group completion of the abelian monoid of isomor-

phism classes of finite H-sets under disjoint union with multiplication induced by

the product of finite H-sets.

We also have the notion of the inflation of a Mackey functor along a quotient

map, following the notation of [3, Definition 2.3], as well as the notion of the

restriction of a Mackey functor to a subgroup.

Definition 2.20. IfN is a normal subgroup ofG, then the quotient map φN : G→
G/N induces a functor φ∗N : Mack(G/N) → Mack(G) where if M is a G/N -

Mackey functor then the G-Mackey functor φ∗N(M) is defined by

φ∗N(M)(G/H) =

M(H/N) if N ⊂ H,

0 otherwise.

Definition 2.21. Let M be a G-Mackey functor and H a subgroup of G. Then,

the restricted H-Mackey functor ↓GH M is defined by

(↓GH M)(T ) = M(G×H T )

for all finite H-sets T , where the finite G-set G×HT is the quotient of G×T by the

relation (gh, t) ∼ (g, ht) for all h ∈ H, with G action given by left-multiplication

in the first component.

Although Proposition 2.15 gives us a formula for the restriction of a transfer

in a Mackey functor, we do not in general have a formula for the transfer of a

restriction.
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Definition 2.22. A Mackey functor M is called cohomological if for all subgroups

K and H of G with K ⊂ H, we have that

TrHK(ResHK(x)) = [H : K]x

for every x ∈M(G/H).

As given by the following proposition, we have already seen examples of co-

homological Mackey functors.

Proposition 2.23. Fixed point Mackey functors are cohomological.

Proof. Let M be a G-module, and let K and H be subgroups of G with K ⊂ H.

Given an arbitrary element x ∈ MH , by definition we have that ResHK(x) = x.

However, we also have by definition that

TrHK(x) =
∑

h̄∈H/K

h · x = [H : K]x

as H acts trivially on x.

Our next goal is to define Green functors, which can be thought of as mul-

tiplicative analogues of Mackey functors, and to do this we first define the box

product of Mackey functors. Since we have defined the category Mack(G) of G-

Mackey functors as the functor category [BG, Ab] enriched over Ab, we can again

use the Day convolution to put a symmetric monoidal structure on Mack(G).

Definition 2.24. The box product M�N of two Mackey functors M and N is

defined to be the left Kan extension of the composite ⊗◦ (M ×N) of the product

of the functors M and N with the tensor product of abelian groups, along the

direct product × of finite G-sets:

BG ×BG
M×N //

×
''

Ab× Ab ⊗ // Ab88

M�N

BG

Similar to Theorem 2.9, the Day convolution theorem implies that Mack(G)

under the box product is a closed symmetric monoidal category. The unit for the

box product is the Burnside Mackey functor A of Example 2.18. In particular, we

notice that a map (i.e. a natural transformation) M�N → P of Mackey functors

is equivalent to maps

M(X)⊗N(Y )→ P (X × Y )
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which are natural in X and Y .

If we let cMack(G) denote the full subcategory of cohomological Mackey func-

tors, then cMack(G) is still a closed symmetric monoidal category as the box

product of two cohomological Mackey functors is cohomological. However, the

Burnside Mackey functor A is not cohomological so is not the unit in cMack(G),

and in fact the unit is the constant Mackey functor Z (see [13, Proposition 2.3.5]).

Definition 2.25. A Green functor is an abelian monoid in Mack(G) under the

box product � of Mackey functors.

We will also give an equivalent yet more explicit definition of a Green functor

that will be useful in later chapters, and for this we need to understand the box

product from a more explicit viewpoint.

Definition 2.26. If M , N and P are Mackey functors, then a Dress pairing

ϕ : (M,N)→ P consists of a collection of maps

ϕH : M(G/H)⊗N(G/H)→ P (G/H)

for each subgroup H of G, which satisfy the following properties. The maps ϕH

are required to commute with the restriction maps so that the diagram

M(G/H)⊗N(G/H)
ϕH //

ResHK⊗ResHK

��

P (G/H)

ResHK

��
M(G/K)⊗N(G/K)

ϕK // P (G/K)

commutes. Furthermore, we require that the diagrams

M(G/K)⊗N(G/K)
ϕK //

33
ResHK⊗id

P (G/K)

TrHK

��

M(G/H)⊗N(G/K)

id⊗TrHK ++
M(G/H)⊗N(G/H)

ϕH // P (G/H)

and

M(G/K)⊗N(G/K)
ϕK //

33
id⊗ResHK

P (G/K)

TrHK

��

M(G/K)⊗N(G/H)

TrHK⊗id ++
M(G/H)⊗N(G/H)

ϕH // P (G/H)
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commute. Element-wise, the commutativity of these diagrams means that

ϕH(a⊗ TrHK(b)) = TrHK(ϕK(ResHK(a)⊗ b))

and

ϕH(TrHK(c)⊗ d) = TrHK(ϕK(c⊗ ResHK(d))),

which is called Frobenius reciprocity.

The reason why we are interested in Dress pairings is that there is a close

relationship between maps out of the box product of Mackey functors and Dress

pairings. The following lemma is stated without proof in [12] and we sketch the

proof given in [11, Lemma 2.17].

Lemma 2.27. Given Mackey functors M , N and P , there is a one-to-one corre-

spondence between maps ψ : M�N → P out of the box product of M and N and

Dress pairings ϕ : (M,N)→ P .

Proof Sketch. Suppose that we start with a map ψ : M�N → P . As discussed

earlier, this is equivalent to having maps M(X) ⊗ N(Y ) → P (X × Y ) that are

natural in the finite G-sets X and Y . We define a Dress pairing ϕ : (M,N)→ P

as follows. For each subgroup H of G, the above gives us a map

ψH : M(G/H)⊗N(G/H)→ P (G/H ×G/H).

However, we also have a map f : P (G/H × G/H) → P (G/H) defined by the

image under P of the morphism in BG given by the equivalence class of the span

G/H ×G/H ∆←− G/H
id−→ G/H. Then, the collection of all ϕH := f ◦ ψH defines

a Dress pairing.

For the other direction, suppose that we start with a Dress pairing ϕ : (M,N)→
P , and let X and Y be arbitrary finite G-sets. Consider the maps f : M(X) →
M(X × Y ) and g : N(Y )→ N(X × Y ) defined as the image under M and N of

the morphisms in BG represented by the spans X
pr1←−− X × Y

id−→ X × Y and

Y
pr2←−− X×Y id−→ X×Y respectively. Taking their tensor product gives us a map

f ⊗ g : M(X)⊗N(Y )→M(X × Y )⊗N(X × Y ).

Now, we know that any finite G-set can be decomposed into a disjoint union of

orbits, so write

X × Y =
∐
α

G/Hα.
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Since Mackey functors take disjoint unions of finite G-sets to direct sums of

abelian groups, it follows that

M(X × Y )⊗N(X × Y ) = C ⊕
⊕
α

(M(G/Hα)⊗N(G/Hα)),

where C consists of the crossed-terms obtained when we distributed the tensor

product over the direct sum. Thus, since the Dress pairing ϕ gives us maps

ϕHα : M(G/Hα)⊗N(G/Hα)→ P (G/Hα) for all α, we have a map

C ⊕
⊕
α

(M(G/Hα)⊗N(G/Hα))
0⊕
⊕
ϕHα−−−−−−→

⊕
α

P (G/Hα) = P (X × Y ).

By composing f ⊗g with this map, we obtain a map M(X)⊗N(Y )→ P (X×Y )

that is natural in X and Y .

Using Lemma 2.27, it then follows that the box product of Mackey functors

has the following explicit inductively defined formula.

Proposition 2.28. Let M and N be Mackey functors. If H is a subgroup of G,

then (M�N)(G/H) is given in terms of (M�N)(G/K) for each subgroup K of

H as

(M�N)(G/H) = M(G/H)⊗N(G/H)⊕
⊕
K<H

((M�N)(G/K)/WK(H))/FR,

with the evident transfer and restriction maps. Here FR is the Frobenius reci-

procity submodule and is generated by elements of the form

a⊗ TrHK(b)− TrHK(ResHK(a)⊗ b)

and

TrHK(c)⊗ d− TrHK(c⊗ ResHK(d)).

Explicit computations of the box product when G = Cp can be found in [9],

and see [10] and [12] for further discussion on the box product of Mackey functors.

As in Definition 2.25, we can now view a Green functor as an abelian monoid

under this explicit description of the box product given by Proposition 2.28. One

can show that we now have the following equivalent definition of a Green functor

that we will primarily use in later chapters.

Definition 2.29. A Green functor is a Mackey functor R such that R(G/H) is a

commutative ring for each subgroup H of G. Furthermore, we require that each
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restriction map ResHK : R(G/H)→ R(G/K) is a ring map, and that the transfer

maps satisfy Frobenius reciprocity, i.e. that

TrHK(x) · y = TrHK(x · ResHK(y))

for all x ∈ R(G/K) and y ∈ R(G/H).

We will be primarily be working with Mackey and Green functors in the

context of the homotopy of G-spectra.

2.3 The homotopy of equivariant spectra

In this section we discuss how Mackey functors and Green functors are used in

equivariant stable homotopy theory. Non-equivariantly, we have the notion of the

homotopy groups πn(X) of a spectrum X where n ∈ Z. If n ≥ 0, we define

πn(X) = [Σ∞Sn, X],

i.e. the set of homotopy classes of maps from the suspension spectrum of the

n-sphere Sn to X. Note here that a non-equivariant spectrum is defined as in

Section 2.1 where we take G to be the trivial group e. If n < 0, we define

πn(X) = [Sn, X]

where the spectrum Sn is defined by (Sn)k = Je(−n, k) and Je is the Mandell-

May category of Definition 2.2 associated to the trivial group. The direct sum

π∗(X) =
⊕
n∈Z

πn(X)

of all the homotopy groups of the spectrum X is precisely the homology of a

point with respect to the generalised homology theory on the category of spectra

corresponding to X. If X is a ring spectrum, i.e. a spectrum together with an

associative and unital (up to homotopy) multiplication map µ : X∧X → X, then

π∗(X) is a Z-graded ring and is called the coefficient ring of X.

If we look at G-spectra for an arbitrary finite group G, then we get a collection

of homotopy G-Mackey functors. Furthermore, we can grade this collection of

homotopy Mackey functors over the orthogonal representation ring RO(G) rather

than just over Z as in the case of non-equivariant spectra.
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Definition 2.30. The orthogonal representation ring RO(G) is the group com-

pletion of the abelian monoid of isomorphism classes of finite-dimensional real

orthogonal G-representations under direct sum. The multiplication on RO(G) is

induced by the tensor product of orthogonal G-representations.

We will see examples of the ring RO(G) for the groups G = C2 and G =

C2 × C2 in Chapters 3 and 4 respectively. We now introduce the RO(G)-graded

homotopy Mackey functors πF(X) of a G-spectrum X, noting that we use the

symbol F for RO(G)-grading, the symbol ∗ for integer grading and as usual an

underline for Mackey functors.

Definition 2.31. Let X be a G-spectrum. If V is a finite-dimensional real

orthogonal G-representation, then the V th homotopy Mackey functor of X is

given by

πV (X)(T ) = [SV ∧ Σ∞T+, X]G

for all finite G-sets T , i.e. objects of the Burnside category BG. Here Σ∞T+ is

the suspension spectrum of the pointed G-set T+ and SV is the representation

sphere (or one-point compactification) of V , and we are looking at the group of

equivariant maps from the G-spectrum SV ∧ Σ∞T+ to the G-spectrum X. If

V is an n-dimensional trivial representation, then we denote the corresponding

homotopy Mackey functor by πn(X).

If [U ]− [W ] is a virtual G-representation giving an element of RO(G), where

U and W are actual orthogonal G-representations, then we have a G-spectrum

SU−W (which we call a virtual representation sphere) defined by

(SU−W )V = JG(W,U ⊕ V )

for all objects V in the Mandell-May category JG.

Remark 2.32. It is a priori not clear whether the notion of the virtual rep-

resentation sphere is independent of choice of representatives for elements in

RO(G). However, this issue is resolved in [23, Theorem 1.6] so that indeed if

[U ]− [W ] = [U ′]− [W ′] in RO(G), then we have an equivalence SU−W ' SU
′−W ′

up to a canonical choice.

Using the notion of the virtual representation sphere, we can extend Definition

2.31 to virtual representations V = U −W ∈ RO(G) by defining

πV (X)(T ) = [SV ∧ Σ∞T+, X]G,
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where now SV ∧ Σ∞T+ is the smash product of two G-spectra as in Definition

2.8. As discussed in Section 2.2, it suffices to consider πV (X) on the orbits G/H

for H a subgroup of G, and for ease of notation we will write

πV (X)(G/H) = πHV (X),

which in this case is given by the H-fixed points [SV , X]H . Given a subgroup

K ⊂ H, we have transfer and restriction maps TrHK : πKV (X) → πHV (X) and

ResHK : πHV (X) → πKV (X) induced by the projection map G/K → G/H as in

Definition 2.14. Analogous to the fact mentioned earlier that if X is an ordinary

homotopy commutative ring spectrum then π∗(X) is a commutative ring, we have

the following.

Theorem 2.33. If X is a homotopy commutative G-ring spectrum, then πF(X)

is an RO(G)-graded Green functor.

In particular, we have that the multiplication from the ring spectrum X in-

duces the box product of Mackey functors. Now, recall that non-equivariantly for

any abelian group A there is a corresponding Eilenberg-MacLane spectrum HA

with the defining property that its homotopy groups are given by

πn(HA) =

A if n = 0,

0 otherwise.

If A is a ring, then HA is a ring spectrum. Furthermore, the spectrum HA

represents (in the sense of the Brown representability theorem) singular homology

and singular cohomology with coefficients in the abelian group A. We similarly

have an equivariant Eilenberg-MacLane spectrum when we replace the abelian

group A with a Mackey functor.

Theorem 2.34. If M is a Mackey functor, then there exists an Eilenberg-MacLane

G-spectrum HM with the property that

πn(HM) =

M if n = 0,

0 otherwise,

and HM is unique up to isomorphism in the homotopy category hoSpG of G-

spectra.

Proof. See [6, Theorem 5.3].
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Note here that the homotopy category hoSpG is obtained from the category

SpG of G-spectra by inverting all weak equivalences, where a map X → Y in SpG

is defined to be a weak equivalence if it induces an isomorphism πHk (X)→ πHk (Y )

on all the integer graded homotopy groups for each subgroup H of G.

If M is a Green functor, then HM is a homotopy commutative ring spectrum.

Note that Theorem 2.34 only gives us the Z-graded homotopy Mackey functors

of HM , not the RO(G)-graded homotopy Mackey functors. Indeed, the main

problem of this thesis is in determining the RO(G)-graded homotopy Mackey

functors of the Eilenberg-MacLane G-spectrum HF2 where G = C2 × C2 and F2

is the constant Mackey functor associated to the field F2 with two elements as in

Example 2.16.

Furthermore, we have that the Eilenberg-MacLane G-spectrum HM repre-

sents Bredon homology and Bredon cohomology with coefficients in the Mackey

functor M . Just as singular homology and cohomology with coefficients in an

abelian group is easier to define for CW-complexes, we will define Bredon homol-

ogy and cohomology with coefficients in a Mackey functor for G-CW complexes.

Definition 2.35. A G-CW complex is a CW-complex X with an action of G

that permutes cells of the same dimension and has equivariant attaching maps.

In particular, the set of n-cells of X forms a G-set which is a disjoint union of

orbits, i.e. the set of n-cells is a disjoint union of equivariant cells (or G-cells) of

the form G/H+ ∧ Dn for H a subgroup of G where G acts trivially on the disk

Dn. A G-CW spectrum is the suspension spectrum of a G-CW complex.

The following is an important class of examples, and explicit G-CW structures

for these will be given in later chapters for the groups G = C2 and G = C2 ×C2.

Example 2.36. If V is an actual G-representation, then the representation

sphere SV is a G-CW complex.

An important fact regarding G-CW complexes is that the Whitehead theorem

from non-equivariant homotopy theory generalises to the equivariant setting.

Theorem 2.37. If X and Y are G-CW complexes, then a G-map f : X → Y is

an equivariant homotopy equivalence if and only if the induced maps fH : XH →
Y H on the fixed-point spaces for all subgroups H of G are ordinary homotopy

equivalences.

Note that an equivariant homotopy equivalence as in the statement of The-

orem 2.37 is defined as a homotopy equivalence where all homotopies are G-

equivariant. The condition that a G-map f : X → Y induces an isomorphism
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on all the fixed-point spaces is precisely the condition for a morphism in T G to

be a weak equivalence with respect to the Bredon model structure on T G. This

is equivalent to the condition that f induces an isomorphism πH∗ (X) → πH∗ (Y )

on all the equivariant homotopy groups by the ordinary Whitehead theorem and

that by definition

πH∗ (X) := π∗(X
H) and πH∗ (Y ) := π∗(Y

H).

Hence, we can re-state Theorem 2.37 as a map of G-CW complexes is an equiv-

ariant equivalence if and only if it is a Bredon weak equivalence. We now return

to our goal of understanding the Bredon homology and cohomology of a G-CW

complex with coefficients in a Mackey functor, and for simplicity we will assume

that our G-CW complexes are of finite type, i.e. the set of n-cells for each n is a

finite G-set.

Definition 2.38. LetX be aG-CW complex andM an arbitrary Mackey functor.

Then, the Bredon chain complex C∗(X;M) is a chain complex of Mackey functors

where the Mackey functor Cn(X;M) is defined by

Cn(X;M)(G/H) = M

(
G/H ×

∐
αn

G/Hαn

)
,

where
∐

αn
G/Hαn is the G-set of n-cells in the G-CW complex X with the evident

transfer and restriction maps induced by the transfer and restriction maps in the

Mackey functor M . The Mackey functors forming the Bredon cochain complex

C∗(X;M) are equal to the Mackey functors forming the Bredon chain complex

as above. The boundary and coboundary maps in the Bredon chain and cochain

complexes are induced by the cofiber sequence

Xn−1/Xn−2 → Xn/Xn−2 → Xn/Xn−1

as in the ordinary cellular chain and cochain complexes for the underlying CW-

complexX, whereXk denotes the k-skeleton ofX. The Bredon homology H∗(X;M)

and Bredon cohomology H∗(X;M) of X with coefficients in the Mackey functor

M is the homology and cohomology of the Bredon chain and cochain complexes

respectively.

We will be primarily interested in taking coefficients in the constant Mackey

functor F2, and in this case (and indeed for the constant Mackey functor as-

sociated to any abelian group) the Bredon homology and cohomology Mackey
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functors can be alternatively calculated as follows. If X is a G-CW complex (or

more generally a G-CW spectrum), then the ordinary cellular chain complex of

the underlying CW-complex (with coefficients in F2) is in fact a chain complex of

F2[G]-modules since the set of n-cells is a G-set. Each of these F2[G]-modules has

a corresponding fixed-point Mackey functor as in Example 2.17, and we therefore

get a chain complex of Mackey functors whose boundary maps on each level of

our G-Mackey functors is induced by the cellular boundary map on the bottom

level. The Bredon homology H∗(X;F2) is then the homology of this chain com-

plex of fixed-point Mackey functors. The Bredon cohomology H∗(X;F2) is the

homology of the chain complex of fixed-point Mackey functors corresponding to

the F2-dual of the above cellular chain complex of F2[G]-modules. We will see

examples of this calculation for the groups G = C2 and G = C2×C2 in Chapters

3 and 4 respectively.

Furthermore, notice that the Bredon homology and cohomology Mackey func-

tors of a G-CW complex X with coefficients in F2 (or any constant Mackey func-

tor) are cohomological Mackey functors as they are given by the homology of a

chain complex of cohomological Mackey functors, recalling by Proposition 2.23

that fixed-point Mackey functors are cohomological. Since Bredon homology with

coefficients in an arbitrary Mackey functor M is represented by the equivariant

Eilenberg-MacLane spectrum HM , we have that

H∗(X;M) ∼= π∗(X ∧HM).

Note that we can pass between Z-graded and RO(G)-graded homotopy Mackey

functors by smashing with (virtual) representation spheres and using the suspen-

sion isomorphism, for example if n ∈ Z and V ∈ RO(G) then

πn−V (X ∧HM) ∼= πn(SV ∧X ∧HM).

In particular, as will be our focus in later chapters, in order to compute the

RO(G)-graded homotopy πFHF2 it suffices to compute the Z-graded Bredon

homology H∗(S
V ;F2) ∼= π∗(S

V ∧HF2) of virtual representation spheres via chain

complexes of fixed-point Mackey functors.



Chapter 3

C2-equivariant stable homotopy

theory

In this chapter we will focus on the group G = C2, and give a number of com-

putations that will be generalised to the non-cyclic group C2 × C2 in Chapter

4. In particular, we will compute the structure of πFHF2 as an RO(C2)-graded

Green functor, where HF2 is the C2-equivariant Eilenberg-MacLane spectrum

corresponding to the constant Mackey functor F2. We also introduce the concept

of Anderson duality and explain why the additive structure of πFHF2 comes in

two symmetric pieces as seen in Figure 3.1.

3.1 The RO(C2)-graded homotopy Mackey func-

tors

Throughout this chapter we let G = C2 be the cyclic group of order two unless

stated otherwise. We will write C2 = {1, t} so that t denotes the non-trivial

element of C2 with t2 = 1. Note that C2 has exactly two distinct one-dimensional

real irreducible representations, which we will denote by 1 and σ. Here 1 is

the trivial one-dimensional representation (where C2 acts trivially on R) and σ

denotes the sign representation whereby the non-trivial element t of C2 acts on

R by sending a real number to its negative. Hence, we have that the orthogonal

representation ring of Definition 2.30 is given by RO(C2) = Z{1, σ}, which is

isomorphic to Z × Z as an abelian group. The regular representation of C2 is

given by

ρ = 1 + σ.

24
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The group G = C2 has only two subgroups, so if M is an arbitrary C2-Mackey

functor then we can depict M via the diagram

M(C2/C2)

��
M(C2/e),

SS

which is called a Lewis diagram, first introduced in [27]. In this section the Mackey

functors of interest will have only either an F2 or 0 at the top and bottom levels,

so the trivial Weyl group actions will not be drawn on our C2-Mackey functors.

Example 3.1. The constant Mackey functor associated to F2 as in Example 2.16

has Lewis diagram

F2

1

��

F2 =

F2,

0

TT

and the dual of the constant Mackey functor has Lewis diagram

F2

0

��

F∗2 =

F2.

1

TT

Notice that the transfer and restriction maps of the dual constant Mackey

functor are precisely the restriction and transfer maps of the constant Mackey

functor respectively. Rather than simply drawing the Lewis diagram for F∗2, we

make the following more general definition from which the definition of the dual

constant Mackey functor F∗2 follows.

Definition 3.2. Let M be a C2-Mackey functor with transfer and restriction

maps TrC2
e and ResC2

e respectively. Then, we define its F2-dual (or simply dual)

to be the C2-Mackey functor M∗ defined by M∗(C2/e) = Hom(M(C2/e),F2) and

M∗(C2/C2) = Hom(M(C2/C2),F2) with transfer and restriction maps (TrC2
e )∗

and (ResC2
e )∗ being the maps induced by ResC2

e and TrC2
e respectively.

Definition 3.2 extends easily to G-Mackey functors for any finite group G. The

following two Mackey functors will also show up in πFHF2, and we will name

these Mackey functors following [3, Section 3.1].
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Example 3.3. The geometric and free Mackey functors are given respectively

by

F2

��

0

��

g = and f =

0

TT

F2.

TT

Notice that the geometric Mackey functor g is precisely the image of the

e-Mackey functor (or C2/C2-Mackey functor) F2 under the pullback of Mackey

functors φ∗C2
: Mack(C2/C2)→ Mack(C2) induced by the quotient map φC2 : C2 →

C2/C2 as in Definition 2.20. Furthermore, notice that g and f are self-dual in the

sense that g∗ = g and f ∗ = f .

We are now ready to compute the additive structure πFHF2, and we first look

at πk
(
Snσ ∧HF2

)
= πk

(
ΣnσHF2

)
where n ≥ 0.

Proposition 3.4. The non-zero homotopy Mackey functors of ΣnσHF2 for n ≥ 0

are given by

πk
(
ΣnσHF2

)
=

F2 if k = n,

g if k ∈ [0, n− 1].

Proof. Fix n ≥ 0. As discussed in Chapter 2, we know that πk(S
nσ ∧ HF2) =

Hk(S
nσ;F2), and the Bredon homology may be computed via a chain complex of

fixed-point Mackey functors. To do this, we first put an explicit C2-CW structure

on the (actual) representation sphere Snσ. We see that Snσ has two equivariant

0-cells indexed by C2/C2, and a single equivariant k-cell indexed by C2/e for each

1 ≤ k ≤ n. The (reduced) cellular chain complex computing H∗(S
nσ;F2)(C2/e),

which is isomorphic to the singular homology with F2-coefficients H∗(S
n;F2) of

the underlying sphere Sn, is given by

F2[C2/C2]
∇←− F2[C2/e]

1+t←−− F2[C2/e]
1+t←−− · · · 1+t←−− F2[C2/e]

concentrated in degrees inside the interval [0, n]. Taking C2-fixed points, we then

get the chain complex of Mackey functors

F2

1

��

F2

∆

��

0oo F2

∆

��

0oo · · ·0oo F2

∆

��

0oo

F2[C2/C2]

0

TT

F2[C2/e]

∇

TT

∇oo F2[C2/e]

∇

TT

1+too · · ·1+too F2[C2/e].

∇

TT

1+too
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Taking homology, we get the homotopy Mackey functors

F2

��

F2

��

F2

��

· · · F2

1

��
0

TT

0

TT

0

TT

· · · F2

0

TT

in degrees 0 through n.

It is useful (for example when discussing the slice spectral sequence) to re-

write the result of Proposition 3.4 in terms of the homotopy Mackey functors of

suspensions of HF2 by multiples of the regular representation, which we do by

taking the trivial suspension n times.

Corollary 3.5. The non-zero homotopy Mackey functors of ΣnρHF2 for n ≥ 0

are given by

πk
(
ΣnρHF2

)
=

F2 if k = 2n,

g if k ∈ [n, 2n− 1].

We now look at suspensions of HF2 by negative multiples of σ (or negative

multiples of the regular representation ρ). We will see later how we can alterna-

tively compute πk
(
Σ−nσHF2

)
where n ≥ 1 using Anderson duality.

Proposition 3.6. The non-zero homotopy Mackey functors of Σ−nσHF2 for n ≥
2 are given by

πk
(
Σ−nσHF2

)
=

F∗2 if k = −n,

g if k ∈ [−n+ 1,−2].

When n = 1 the only non-zero homotopy Mackey functor is f in degree −1.

Proof. Since S−nσ is the Spanier-Whitehead dual (see [1, Section 2.2.1]) of Snσ, we

have as discussed in Chapter 2 that the chain complex computingH∗(S
−nσ;F2)(C2/e)

is the F2-dual of the chain complex from the proof of Proposition 3.4, namely the

chain complex

F2[C2/C2]
∆−→ F2[C2/e]

1+t−−→ F2[C2/e]
1+t−−→ · · · 1+t−−→ F2[C2/e]

concentrated in degrees inside the interval [−n, 0]. Taking C2-fixed points, we

then get the chain complex of Mackey functors

F2

1

��

F2

∆

��

//1 F2

∆

��

//0 · · ·//0 F2

∆

��

//0

F2[C2/C2]

0

TT

F2[C2/e]

∇

TT

//∆ F2[C2/e]

∇

TT

//1+t · · ·//1+t F2[C2/e].

∇

TT

//1+t
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The homology of this chain complex is given (in the case that n ≥ 2) by

0

��

0

��

F2

��

· · · F2

0

��
0

UU

0

UU

0

TT

· · · F2.

1

TT

However, when n = 1 we are just left with

0

��

0

��
0

UU

F2.

UU

Analogous to Corollary 3.5, we may desuspend n times in order to re-write the

result of Proposition 3.6 in terms of suspensions of HF2 via negative multiples of

the regular representation.

Corollary 3.7. The non-zero homotopy Mackey functors of Σ−nρHF2 for n ≥ 2

are given by

πk
(
Σ−nρHF2

)
=

F∗2 if k = −2n,

g if k ∈ [−2n+ 1,−n− 2].

When n = 1 the only non-zero homotopy Mackey functor is f in degree −n− 1.

3.2 Anderson duality

We introduce equivariant Anderson duality in the context of giving an alternative

argument to deduce the homotopy Mackey functors given in Proposition 3.6. We

observe the following twisting.

Proposition 3.8. As C2-spectra, we have that Σ4HF2 ' Σ2ρHF∗2.

Proof. It suffices to show that Σ4−2ρHF2 ' HF∗2, and to do this we will show

that both spectra have the same homotopy Mackey functors. We see that

πk(Σ
4−2ρHF2) = πk(Σ

2−2σHF2)

= πk−2(Σ−2σHF2).
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However, by Proposition 3.6 we know that

πk−2

(
Σ−2σHF2

)
=

F∗2 if k − 2 = −2,

0 otherwise.

Hence, we have that

πk(Σ
4−2ρHF2) =

F∗2 if k = 0,

0 otherwise,

which is precisely πk(HF∗2). Hence, we must have that Σ4−2ρHF2 ' HF∗2 by the

uniqueness of Eilenberg-MacLane spectra as in Theorem 2.34.

In the following discussion, we can take G to be an arbitrary finite group.

Consider the category HF2-mod of HF2-modules, where here F2 is the constant

G-Mackey functor associated to F2. Then, we have a contravariant functor

IF2 : (HF2-mod)op → HF2-mod

called Anderson duality, where if X is an HF2-module then the homotopy Mackey

functors of its Anderson dual IF2X are given by

πV IF2X = (π−VX)∗

for V ∈ RO(G). Note that on the right-hand side we are taking the F2-dual of

the Mackey functor π−VX as in Definition 3.2.

Proposition 3.9. Let M be an F2-module. Then, we have that IF2HM = HM∗.

That is, for every V ∈ RO(G) we have that

πV (HM∗) ∼= (π−VHM)∗.

Proof. See [3, Proposition 2.9].

More detailed discussion on Anderson duality can be found in [7] and [16].

Note that in particular Proposition 3.9 implies that IF2HF2 = HF∗2. Using this,

we give an alternative proof of Proposition 3.6 (in the case that n ≥ 2).

Proof of Proposition 3.6. Let n ≥ 2 and k ∈ Z be arbitrary. We want to compute

πk(Σ
−nσHF2) = πk+nσ(HF2). However, by Proposition 3.9 we have that

(πk+nσHF2)∗ ∼= π−k−nσ(HF∗2)

= π−k(Σ
nσHF∗2)
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But by Proposition 3.8, we know that Σ2−2σHF2 ' HF∗2. That is,

π−k(Σ
nσHF∗2) ∼= π−k(Σ

2+(n−2)σHF2)

= π−k−2(Σ(n−2)σHF2).

Hence, we have shown that

πk(Σ
−nσHF2) ∼= (π−k−2(Σ(n−2)σHF2))∗,

and the result now follows after noticing that g∗ = g.

The Mackey functor homotopy of HF2 that we have now computed is depicted

in Figure 3.1 below. In particular, our above discussion of Anderson duality

Figure 3.1: πk(Σ
nσHF2)
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explains the evident symmetry between the first and third quadrants (if we ignore

the free Mackey functor f which in any case is zero at the C2/C2 level).
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3.3 The ring structure of the RO(C2)-graded ho-

motopy

Since HF2 is a commutative ring spectrum, we know by Theorem 2.33 that

πFHF2 is an RO(C2)-graded Green functor. That is, we can write πFHF2 as a

single Mackey functor where both πFHF2(C2/C2) and πFHF2(C2/e) are commu-

tative RO(C2)-graded rings, the restriction map is a ring map and the transfer

map satisfies Frobenius reciprocity. Our goal in this section is to compute these

ring structures explicitly.

We begin by computing the ring structure of the top level πFHF2(C2/C2),

which as mentioned in Chapter 2 we will re-write as πC2
F HF2. If we focus on the

top levels of the Mackey functors in Figure 3.1, then we say that the non-zero

elements in the first quadrant form the positive cone, and non-zero elements in

the third quadrant form the negative cone. Now, let

x ∈ πC2
0 (Sσ ∧HF2) and y ∈ πC2

1 (Sσ ∧HF2)

be the generators of the two copies of F2 in πC2
∗ (Sσ ∧ HF2) at degrees 0 and 1

respectively. Then, we claim that the positive cone is polynomial in x and y.

Note that for example in [8] these two elements are named ρ and τ respectively.

Theorem 3.10. The positive cone in πC2
F HF2 is given by the graded polynomial

ring F2[x, y], where the elements x and y are defined as above.

Proof. Given that we already know the additive structure of πC2
F HF2 from Section

3.1, it suffices to show that if z generates a copy of F2 in the positive cone, then

both zx and zy are non-zero i.e. that they also generate copies of F2 in the

positive cone. So, let n ≥ 1 be arbitrary and suppose that z is the generator of

πC2
k (Snσ ∧HF2) for some 0 ≤ k ≤ n. The following diagram shows the top row of

the chain complex of Mackey functors (as constructed in the proof of Proposition

3.4) computing πC2
k (Snσ ∧HF2) as well as the class z:

• • · · · • z• • · · · • •

Here each • represents a copy of F2, and no differentials are drawn as they are

all zero. Now, the ring multiplication in the positive cone is induced by

πC2
i (Snσ ∧HF2)⊗ πC2

j (Sn
′σ ∧HF2)→ πC2

i+j(S
(n+n′)σ ∧HF2)

whereby we take the tensor product of the F2[C2]-modules forming the C2/e

levels of the chain complexes of Mackey functors computing πi(S
nσ ∧HF2) and
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πj(S
n′σ∧HF2) and then take C2-fixed points. We want to multiply z by x and by

y, so we will be tensoring with the chain complex computing π∗(S
σ ∧HF2) (i.e.

we take n′ = 1). Focusing on the top level of our Mackey functors (i.e. taking

C2-fixed points of the tensor product), we obtain the following double complex:

• • · · · • zx• • · · · • •

• ••oo

OO

· · ·oo ••oo

OO

••
zy

oo

OO

••oo

OO

· · ·oo ••oo

OO

••oo

OO

Here each •• represents a copy of F2
2, which is the C2-fixed points of the F2-

module F2[C2/e × C2/e]. Note that we have an explicit decomposition of the

product C2/e×C2/e into two free transitive C2-orbits C2/etC2/e as follows. For

ease of notation, we write elements in C2/e×C2/e as zij = (zi, zj) for 0 ≤ i, j ≤ 1

where z0 = 1 and z1 = t. Then, the two free transitive C2-orbits are {z00, z11}
and {z10, z01}. Also, note that each single • in the above diagram is the C2-fixed

points of the F2[C2]-module F2[C2/e × C2/C2] ∼= F2[C2/e], except at degree 0

which is the C2-fixed points of F2[C2/C2].

Furthermore, each differential •• → • in the above double complex is the

co-diagonal map ∇, and each differential •• → •• is given by the matrix
[

1 1

1 1

]
.

To see this, since we are taking the tensor product we know that each differential

F2[C2/e× C2/e]
C2 → F2[C2/e× C2/C2]C2

is given by applying the map id × (z0 7→ 1, z1 7→ 1) and taking C2-fixed points.

So, applying this map to each of our four basis elements {z00, z11} ∪ {z10, z01} of

F2[C2/e× C2/e], we see that

z00 7→ z0, z10 7→ z1,

z11 7→ z1, z01 7→ z0.

Thus, after taking C2-fixed points we see that the two basis elements z00 +z11 and

z10 + z01 of F2[C2/e×C2/e]
C2 map to z0 + z1, so indeed we obtain the co-diagonal

map ∇. Similarly, each differential

F2[C2/e× C2/e]
C2 → F2[C2/e× C2/e]

C2

is given by applying the map (1 + t) × id and taking C2-fixed points. Applying

this map to each of our four basis elements of F2[C2/e× C2/e], we see that

z00 7→ z00 + z10, z10 7→ z10 + z00,

z11 7→ z11 + z01, z01 7→ z01 + z11.
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Therefore, after taking C2-fixed points we see that each of the two basis elements

z00 + z11 and z10 + z01 of F2[C2/e × C2/e]
C2 map to the sum of the two basis

elements of F2[C2/e× C2/e]
C2 , so indeed we are left with the matrix

[
1 1

1 1

]
.

It remains to show that the elements in the double complex representing

zx and zy are non-zero in homology. To do this, first suppose that k ≥ 1.

Then, as indicated on the diagram of our double complex above, the product

zx is represented by the sum z0 + z1 ∈ F2[C2/e × C2/C2]C2 ∼= F2[C2/e]
C2 as z

is represented by z0 + z1 ∈ F2[C2/e]
C2 in our original chain complex computing

πC2
k (Snσ ∧ HF2), and x ∈ πC2

0 (Sσ ∧ HF2) is represented by 1 ∈ F2[C2/C2]C2 .

However, we have that y ∈ πC2
1 (Sσ ∧HF2) is represented by z0 + z1 ∈ F2[C2/e]

C2 ,

so the product zy is represented by z00 + z11 + z10 + z01 ∈ F2[C2/e×C2/e]
C2 , i.e.

by the sum of the two basis elements of F2[C2/e× C2/e]
C2 .

Therefore, we have that both zx and zy are in the kernel of the total differential

of the double complex (which is defined to be the sum of the horizontal and

vertical differentials), and thus they are homology classes. However, even though

both zx and zy are in the image of either a horizontal or vertical differential

(unless k = n in which case zy is not in the image of a horizontal or vertical

differential), they are not in the image of the total differential so they are non-

zero homology classes.

Note that if k = 0, then zy is represented by z0 + z1 ∈ F2[C2/e×C2/C2]C2 ∼=
F2[C2/e]

C2 which is still in the kernel and not in the image of the total differential,

and zx is represented by 1 ∈ F2[C2/C2 × C2/C2]C2 and is in the kernel of the

total differential and in particular not in the image of the horizontal or vertical

differentials as depicted on our earlier diagram of this double complex.

Now that we understand the positive cone, we turn to the negative cone in

πC2
F HF2. Since the free Mackey functor f has f(C2/C2) = 0 (as in Example 3.3),

we see from Figure 3.1 that the smallest positive n such that πC2
∗ (S−nσ ∧ HF2)

has a non-zero class is n = 2. The homotopy πC2
∗ (S−2σ ∧HF2) is concentrated in

degree −2 and we let

θ ∈ πC2
−2(S−2σ ∧HF2)

be the generator of the single copy of F2 in this degree. We claim that this class

θ is ‘infinitely divisible’ by x and y in the sense of the following theorem.

Theorem 3.11. The negative cone in πC2
F HF2 is given by F2[x,y]

(x∞,y∞)
{θ} with the

class θ defined as above. That is, any non-zero class in the negative cone is

represented by some element θ
xiyj
∈ F2[x,y]

(x∞,y∞)
{θ} in the sense that we get back the
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class θ after multiplying by the class xiyj in the positive cone, and we get zero

when we multiply by any class in the positive cone that does not divide xiyj.

Proof. Again, we know the additive structure of πC2
F HF2 from Section 3.1, so it

suffices to show that if z generates a copy of F2 in the negative cone, then zx

and zy are non-zero unless they are forced to be zero by degree reasons (i.e. if

multiplying by x or y pushes us into a degree whose corresponding homotopy

group is zero). So, let n ≥ 3 be arbitrary, and suppose that z is the generator of

πC2
k (S−nσ ∧HF2) for some −n ≤ k ≤ −2. Note that we ignore the case n = 2 as

θx = θy = 0 by degree reasons. Now, the following diagram shows the top row

of the chain complex of fixed-point Mackey functors computing πC2
k (S−nσ ∧HF2)

together with the class z:

• // • • · · · • z• • · · · • •

Again each • represents a copy of F2 and an arrow is drawn in the chain complex

if and only if the corresponding differential is zero. As in the proof of Theorem

3.10, we now want to tensor with the chain complex computing πC2
∗ (Sσ ∧ HF2)

which results in the following double complex:

• // • • · · · • zx• • · · · • •

• ••//

OO

••//

OO

· · ·// ••//

OO

••
zy

//

OO

••//

OO

· · ·// ••//

OO

••//

OO

All the horizontal and vertical differentials in this double complex were computed

in the proof of Theorem 3.10 except for the differential • → •• which we claim is

the diagonal map ∆. Indeed, this horizontal differential

F2[C2/C2 × C2/e]
C2 → F2[C2/e× C2/e]

C2

is given by applying the map (1 7→ z0 +z1)× id and taking C2-fixed points, noting

that we use the same notation as in the proof of Theorem 3.10. Now, applying

this map to the basis {z0, z1} of F2[C2/e], we see that

z0 7→ z00 + z10 and z1 7→ z01 + z11.

Hence, after taking C2-fixed points we get that the basis element z0 + z1 of

F2[C2/e]
C2 maps to the diagonal element z00 +z11 +z10 +z01 of F2[C2/e×C2/e]

C2 ,

so this horizontal differential is indeed the diagonal map.
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Now, as in the proof of Theorem 3.10 we have that zx is represented by

z0 + z1 ∈ F2[C2/e×C2/C2]C2 ∼= F2[C2/e]
C2 and zy is represented by the diagonal

element z00 + z11 + z10 + z01 ∈ F2[C2/e × C2/e]
C2 , so both zx and zy are in the

kernel of the total differential, i.e. are indeed homology classes. Suppose first that

−n < k < −2. By the same argument as in the proof of Theorem 3.10, we have

that both zx and zy are not in the image of the total differential (even though

they are in the image of the vertical and horizontal differential respectively) so

therefore represent non-zero classes in homology. This same argument works if

k = −n and we are looking at zy, or if k = −2 and we are looking at zx.

However, if k = −n then by degree reasons we know that zx is zero in ho-

mology, which can also be seen by looking at the above double complex as it is

indeed in the image of the total differential. If k = −2, then again by degree

reasons we know that zy is zero in homology, which can also be seen in the above

double complex as it is homologous to a class which is in the image of the total

differential.

Figure 3.2 below depicts the top levels of the Mackey functors in Figure 3.1

and what we know at this point about the ring structure of πC2
F HF2, whilst

highlighting the duality between the positive and negative cones.

However, in order to complete our understanding of the ring structure of

πC2
F HF2, we need to know what happens when we multiply two elements in the

negative cone.

Proposition 3.12. The product of any two elements in the negative cone of

πC2
F HF2 is zero.

Proof. Consider two arbitrary elements θ
xiyj

and θ
xky`

in the negative cone where

i, j, k, ` ≥ 0. Then, we want to show that θ
xiyj
· θ
xky`

= 0. To see this, suppose for

the sake of a contradiction that this product is non-zero. By our description of

the negative cone as seen in Figure 3.2, we have that

θ

xiyj
∈ πC2

−2−j(S
(−2−(i+j))σ ∧HF2)

and
θ

xky`
∈ πC2

−2−`(S
(−2−(k+`))σ ∧HF2).

Therefore, since we assume that their product is non-zero, we have that

θ

xiyj
· θ

xky`
=

θ

xi+kyj+`+2
∈ πC2

−2−(j+`+2)(S
(−2−(i+k+j+`+2))σ ∧HF2).
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Figure 3.2: πC2
k (Snσ ∧HF2)
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Now, by Theorem 3.11 we know that

θ =
θ

xiyj
· xiyj =

θ

xky`
· xky`,

and hence by our above assumption we have that

θ2 =
θ

xiyj
· θ

xky`
· xiyjxky`

=
θ

xi+kyj+`+2
xi+kyj+`

=
θ

y2
.

However, we have that
θ

y2
· y =

θ

y

is non-zero, but

θ2y = θ(θy) = 0
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as θy = 0 for degree reasons, so we have indeed reached a contradiction.

Now that we have derived the complete ring structure of πC2
F HF2, the RO(C2)-

graded Green functor structure of πFHF2 is a corollary. In what follows, we refer

to the positive and negative cones of πFHF2 to be the first and third (minus the

free Mackey functor f = π−1(Σ−σHF2)) quadrants respectively of Figure 3.1, i.e.

these terms now refer to the whole Mackey functors, not just the top levels of the

Mackey functors.

Corollary 3.13. The positive cone in πFHF2 is given by the Mackey functor of

RO(C2)-graded rings

F2[x, y]

π

��
F2[x, y]/(x),

0

TT

where π : F2[x, y]→ F2[x, y]/(x) is the quotient ring map.

Proof. Let n ≥ 0 be arbitrary. Then, by Theorem 3.10 we know that the homol-

ogy of the chain complex of fixed-point Mackey functors computing π∗(Σ
nσHF2)

as constructed in the proof of Proposition 3.4 is given by

F2{xn}

��

F2{xn−1y}

��

F2{xn−2y2}

��

· · · F2{yn}

1

��
0

TT

0

TT

0

TT

· · · F2{ResC2
e (yn)},

0

TT

where here the notation F2{a} means a copy of F2 generated by a, and we identify

ResC2
e (yn) with yn as the restriction map in degree n is the identity map.

Remark 3.14. The Mackey functor given in the statement of Corollary 3.13 is

an RO(C2)-graded Green functor, noting that Frobenius reciprocity is of course

satisfied as the transfer map is zero. A similar remark holds for Corollary 3.15

below.

We now look at the negative cone of πFHF2, and focus on the subring
F2[x,y]

(x∞,y∞)
{θ} of πC2

F HF2, where we recall that this subring has trivial multiplication.

Consider the map
F2[x, y]

(x∞, y∞)
{θ} x−→ F2[x, y]

(x∞, y∞)
{θ}

given by multiplication by x. The kernel of this map can be thought of as the

F2-linear span of the collection of all θ/yi for i ≥ 0 inside F2[x,y]
(x∞,y∞)

{θ}, and we

denote the kernel by ker(x).
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Corollary 3.15. The negative cone in πFHF2 is given by the Mackey functor of

RO(C2)-graded rings
F2[x,y]

(x∞,y∞)
{θ}

0

��
F2[x,y]

(x∞,y∞)
{θ} ∩ ker (x),

i

SS

where i : F2[x,y]
(x∞,y∞)

{θ} ∩ ker(x)→ F2[x,y]
(x∞,y∞)

{θ} is the inclusion map.

Proof. Let n ≥ 2 be arbitrary. Then, by Theorem 3.11 we have that the homology

of the chain complex of fixed-point Mackey functors computing π∗(Σ
−nσHF2) as

constructed in the first proof of Proposition 3.6 is given by

0

��

0

��

F2{ θ
xn−2}

��

F2{ θ
xn−3y

}

��

· · · F2{ θ
yn−2}

0

��
0

UU

0

UU

0

TT

0

SS

· · · F2{ θ
yn−2},

1

SS

where we are identifying the generator of the F2 at the bottom level of the Mackey

functor in degree −n with θ/yn−2 as the transfer map is the identity.



Chapter 4

The Klein four homology of a

point

In this chapter we discuss the structure of the Green functor πFHF2 for the

group G = C2 × C2. In particular, we look at the ring structure of the top level

πGFHF2 (which can be thought of as the G-equivariant homology of a point), and

we give a complete algebraic description of the whole Mackey functor structure

of πFHF2. The additive structure of the top level πGFHF2 is computed in [2]

in the form of Poincaré series for the dimensions of the corresponding F2-vector

spaces, and we show how to derive these Poincaré series by constructing explicit

G-CW structures on G-representation spheres and iteratively using the spectral

sequence of a double complex. This method can also be used to derive πGFHZ,

and we discuss this in Section 4.8 as well as how we can instead use the Bockstein

spectral sequence to compute the homology with integer coefficients.

4.1 (C2 × C2)-Mackey functors and representa-

tions

Throughout this section, and indeed throughout this chapter, we let G = C2×C2

with presentation

G = 〈t1, t2 | t21 = t22 = (t1t2)2 = 1〉,

and we let t3 = t1t2. We can think of the identity element in C2×C2 as (1, 1), t1

as (t, 1), t2 as (1, t) and t3 as (t, t), with C2 × C2 = {1, t} × {1, t} following the

notation of Chapter 3. The Klein four group has three non-trivial C2-subgroups

generated by t1, t2 and t3 respectively, and we let H1 = 〈t1〉, H2 = 〈t2〉 and

39
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H3 = 〈t3〉. Given these notational conventions, if M is a G-Mackey functor then

we will depict M by the Lewis diagram

M(G/G)

&&����
M(G/H1)

@@

&&

M(G/H2)

SS

��

M(G/H3)

ff

��
M(G/e).

ff SS @@

Note that the Weyl group actions are not drawn on the above diagram as for

the most part these actions will be trivial for the Mackey functors we will be

considering, where the values of the Mackey functors on each orbit space will

be F2-vector spaces. In particular, the Weyl group actions are trivial for the

homotopy Mackey functors in πFHF2. Furthermore, we will not draw any transfer

or restriction maps on our Mackey functors that are zero, so if an arrow F2 → F2

is drawn on a Mackey functor then we know that it represents the identity map.

Example 4.1. The Lewis diagrams for the constant Mackey functor associated

to F2 and its dual are given by

F2

������

F2

F2 = F2

��

F2

��

F2

��

and F∗2 = F2

>>

F2

OO

F2

``

F2 F2.

>>OO``

In particular, all restriction maps are the identity and all transfer maps are zero

in the Mackey functor F2, and the reverse is true for the Mackey functor F∗2.

The definition of the dual constant Mackey functor also follows Definition 3.2 for

(C2 × C2)-Mackey functors.

As an abelian group, we have that RO(G) ∼= Z4. In particular, C2 × C2 has

precisely three distinct non-trivial one-dimensional real representations, which we

will call σ1, σ2 and σ3 so that the regular representation is given by

ρ = 1 + σ1 + σ2 + σ3.
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More specifically, let iH1 , iH2 and iH3 denote the inclusions of the C2-subgroups

H1, H2 and H3 into G respectively. Then, by pre-composing representations

of G with these three inclusions, we obtain three induced maps i∗H1
: RO(G) →

RO(H1), i∗H2
: RO(G)→ RO(H2) and i∗H3

: RO(G)→ RO(H3). Letting σ be the

sign representation of C2, the distinct irreducible representations σ1, σ2 and σ3

satisfy

i∗H1
(σ1) = 1, i∗H1

(σ2) = σ and i∗H1
(σ3) = σ,

i∗H2
(σ1) = σ, i∗H2

(σ2) = 1 and i∗H2
(σ3) = σ,

i∗H3
(σ1) = σ, i∗H3

(σ2) = σ and i∗H3
(σ3) = 1.

That is, the one-dimensional real representation σ1 is defined by H1 acting triv-

ially on R with t2 and t3 acting non-trivially, and σ2 and σ3 are defined similarly

where H2 acts trivially and H3 acts trivially respectively.

4.2 A trigraded complex of Mackey functors

In this section, we will construct for each (p, q, r) ∈ Z3 a triple complex of

Mackey functors whose homology is precisely π∗(Σ
pσ1+qσ2+rσ3HF2). First, let

p ≥ 0 be arbitrary and consider the actual representation sphere Spσ1 . This rep-

resentation sphere has an explicit G-CW structure consisting of two equivariant

0-cells indexed by G/G, and a single equivariant k-cell indexed by G/H1 for each

1 ≤ k ≤ p. Then, similar to the proof of Proposition 3.4, the (reduced) cellular

chain complex computing the homology H∗(S
pσ1 ;F2)(G/e) is given by

F2[G/G]
∇←− F2[G/H1]

1+t2←−− F2[G/H1]
1+t2←−− · · · 1+t2←−− F2[G/H1].

Note that we have written these differentials in terms of the representative t2 of

the non-trivial coset in G/H1, but we could have instead chosen the representative

t3 so that the differentials can be written as multiplication by 1 + t3. By taking

H1, H2, H3 and G-fixed points, we obtain a (singly-graded) chain complex of

Mackey functors whose homology is precisely π∗(S
pσ1 ∧ HF2). The G/e, G/H1



42 CHAPTER 4. THE KLEIN FOUR HOMOLOGY OF A POINT

and G/G levels of this chain complex of Mackey functors is given by

F2

1

��

F2

∆

��

0oo F2

∆

��

0oo · · ·0oo F2

∆

��

0oo

F2[G/G]

0

TT

1

��

F2[G/H1]

∇

TT

∇oo

1

��

F2[G/H1]

∇

TT

1+t2oo

1

��

· · ·1+t2oo F2[G/H1]

∇

TT

1+t2oo

1

��
F2[G/G]

0

TT

F2[G/H1]

0

TT

∇oo F2[G/H1]

0

TT

1+t2oo · · ·1+t2oo F2[G/H1].

0

TT

1+t2oo

Looking instead at the G/H2 level (as well as again the G/e and G/G levels), we

have

F2

1

��

F2

1

��

0oo F2

1

��

0oo · · ·0oo F2

1

��

0oo

F2

1

��

0

TT

F2

∆

��

0oo

0

TT

F2

∆

��

0oo

0

TT

· · ·0oo F2

∆

��

0oo

0

TT

F2[G/G]

0

TT

F2[G/H1]

∇

TT

∇oo F2[G/H1]

∇

TT

1+t2oo · · ·1+t2oo F2[G/H1].

∇

TT

1+t2oo

Note that the chain complex looking at the G/e, G/H3 and G/G levels is identical

to the above. Computing homology, we therefore see that

F2

����
πk(S

pσ1 ∧HF2) = 0 F2 F2

0

for each 0 ≤ k ≤ p − 1, and πp(S
pσ1 ∧HF2) is the constant Mackey functor F2.

Now, if p > 0 then as in Chapter 3 in order to compute π∗(S
−pσ1∧HF2) we dualise

the reduced cellular chain complex computing H∗(S
pσ1 ;F2)(G/e) and then take

fixed points under the various subgroups of G to give us a dual chain complex of

Mackey functors. The G/e, G/H1 and G/G levels of this chain complex is given
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by

F2

1

��

F2

∆

��

//1 F2

∆

��

//0 · · ·//0 F2

∆

��

//0

F2[G/G]

0

TT

1

��

F2[G/H1]

∇

TT

//∆

1

��

F2[G/H1]

∇

TT

//1+t2

1

��

· · ·//1+t2 F2[G/H1]

∇

TT

//1+t2

1

��
F2[G/G]

0

TT

F2[G/H1]

0

TT

//∆ F2[G/H1]

0

TT

//1+t2 · · ·//1+t2 F2[G/H1],

0

TT

//1+t2

and looking at either the G/H2 or G/H3 levels (as well as the G/e and G/G

levels) we have

F2

1

��

F2

1

��

//1 F2

1

��

//0 · · ·//0 F2

1

��

//0

F2

1

��

0

TT

F2

∆

��

//1

0

TT

F2

∆

��

//0

0

TT

· · ·//0 F2

∆

��

//0

0

TT

F2[G/G]

0

TT

F2[G/H1]

∇

TT

//∆ F2[G/H1]

∇

TT

//1+t2 · · ·//1+t2 F2[G/H1].

∇

TT

//1+t2

Taking homology (and assuming for the moment that p > 1), we therefore see

that the non-zero homotopy Mackey functors are given by

F2

����
πk(S

−pσ1 ∧HF2) = 0 F2 F2

0

for each −p+ 1 ≤ k ≤ −2 and

F2

��   
π−p(S

−pσ1 ∧HF2) = F2

>>

  

F2 F2

F2.

>>OO
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If p = 1, then the only non-zero homotopy Mackey functor is

0

π−1(S−σ1 ∧HF2) = F2

  

0 0

F2.

Notice in particular for every p ∈ Z we have that

πGk (Spσ1 ∧HF2) ∼= πC2
k (Spσ ∧HF2),

where on the right-hand side we are looking at the C2-Mackey functor homo-

topy of HF2 where F2 is the constant C2-Mackey functor. That is, by looking

at πG∗ (Spσ1 ∧ HF2) we have a copy of the calculation of πC2
F HF2 from Chap-

ter 3. Moreover, using the notation from Definition 2.21 we see that the re-

stricted H1-Mackey functor ↓GH1
πk(S

pσ1 ∧HF2) is precisely the C2-Mackey func-

tor πk(S
p∧HF2), and both ↓GH2

πk(S
pσ1 ∧HF2) and ↓GH3

πk(S
pσ1 ∧HF2) are equal

to the C2-Mackey functor πk(S
pσ ∧HF2).

This phenomenon holds more generally due to the relation between the irre-

ducible representations of C2 × C2 and C2 discussed in Section 4.1, whereby

↓GH1
πk(S

pσ1+qσ2+rσ3 ∧HF2) = πk(S
p+(q+r)σ ∧HF2),

and similarly we are left with the C2-Mackey functors πk(S
q+(p+r)σ ∧ HF2) and

πk(S
r+(p+q)σ ∧HF2) if we restrict to the C2-subgroups H2 and H3 respectively.

Note that the above discussion about πk(Σ
pσ1HF2) is symmetric if we want

to instead look at either πk(Σ
qσ2HF2) or πk(Σ

rσ3HF2). Now, given (p, q, r) ∈ Z3,

our trigraded complex of Mackey functors computing π∗(Σ
pσ1+qσ2+rσ3HF2) will be

obtained by taking the tensor product of the G/e levels of the above singly graded

chain complexes of Mackey functors computing π∗(Σ
pσ1HF2), π∗(Σ

qσ2HF2) and

π∗(Σ
rσ3HF2) and then taking fixed points. For p, q, r ≥ 0, this resulting triple

complex can be viewed as the reduced cellular chain complex corresponding to

the product G-CW structure on Spσ1+qσ2+rσ3 = Spσ1 ∧ Sqσ2 ∧ Srσ3 with respect

to our above G-CW structures on the actual representation spheres Spσ1 , Sqσ2

and Srσ3 . Since we are looking at the reduced cellular chain complexes, we may

ignore the second 0-cells in each of these three G-CW structures and thus we can
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visualise the product G-CW structure on Spσ1+qσ2+rσ3 as follows:

G/H3 G/e G/e

G/e 2G/e 2G/e

G/H3 G/e G/e

G/e 2G/e 2G/e

G/G G/H1 G/H1

G/H2 G/e G/e

Note we are using here that, as G-sets,

G/Hi ×G/Hj
∼= G/e

for each i, j ∈ {1, 2, 3} with i 6= j, and that

G/H1 ×G/H2 ×G/H3
∼= G/e tG/e.

Furthermore, notice that

G/Hi ×G/Hi
∼= G/Hi tG/Hi

for each i ∈ {1, 2, 3} as in Chapter 3, thinking of G/Hi as a copy of C2/e. Now,

each Mackey functor in our triple complex is the fixed-point Mackey functor cor-

responding to one of the F2[G]-modules F2[G/G], F2[G/H1], F2[G/H2], F2[G/H3],

F2[G/e] or F2[2G/e]. For p, q, r ≥ 0 our triple complex of Mackey functors looks

as follows (in particular when p = r = 2 and q = 1). The fixed-point Mackey

functors that these symbols represent are described explicitly below.

oo
??

��

oo
??

��

??

��

oo

��

oo

�� ��

oo
??

��

oo
??

��

??

��

oo

�� ��

oo

��

oo
??

oo
?? ??

oo oo
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We know from before that is the constant Mackey functor F2. Furthermore,

we saw that the fixed-point Mackey functor corresponding to F2[G/H1] is given

by

F2

##��

∆

��
= F2

2

∇

AA

1

""

F2

∆

��

F2,

∆

��
F2

2

∇

TT

∇

AA

and the fixed-point Mackey functors and corresponding to F2[G/H2] and

F2[G/H3] are symmetric where the two copies of F2
2 now appear at the G/e and

G/H2 or the G/e and G/H3 levels respectively. The fixed-point Mackey functors

corresponding to the F2[G]-modules F2[G/e] and F2[2G/e] are more complicated.

First, note that our trigraded complex of Mackey functors includes the fixed-

point Mackey functor corresponding to the F2[G]-module F2[G/e] in the form of

F2[G/H1 ×G/H2], F2[G/H1 ×G/H3] and F2[G/H2 ×G/H3]. However, as in the

above diagram of our triple complex we have named each of these three Mackey

functors , and the reason for this is that we can choose bases for the three F2[G]-

modules such that the three resulting fixed-point Mackey functors are equal.

We first look at the fixed-point Mackey functor associated to F2[G/H1×G/H2].

Similar to the proof of Theorem 3.10, for ease of notation we will write elements

in F2[G/H1 ×G/H2] as uij = (ai, bj) for 0 ≤ i, j ≤ 1, where a0 = H1, a1 = t2H1,

b0 = H2 and b1 = t1H2. Then, we use the ordered basis {u00, u10, u01, u11} for

F2[G/H1×G/H2]. In this basis, the corresponding fixed-point Mackey functor is

given by

F2{u00 + u10 + u01 + u11}

∆

**

∆

��

∆

yy
F2{u00 + u01, u10 + u11}

∇

88

A

**

F2{u00 + u10, u01 + u11}

∇

TT

B

��

F2{u00 + u11, u10 + u01}

∇

jj

C

yy
F2{u00, u10, u01, u11}.

AT

jj

BT

TT

CT

88
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Here the matrices A, B and C are given by

A =


1 0

0 1

1 0

0 1

 , B =


1 0

1 0

0 1

0 1

 and C =


1 0

0 1

0 1

1 0

 .
Similarly, if we write elements in F2[G/H1×G/H3] as vij = (ai, ck) for 0 ≤ i, k ≤ 1

where c0 = H3 and c1 = t1H3 = t2H3 and use the basis {v00, v11, v01, v10} for

F2[G/H1×G/H3], then the corresponding fixed-point Mackey functor is given by

F2{v00 + v11 + v01 + v10}

∆

**

∆

��

∆

yy
F2{v00 + v01, v11 + v10}

∇

99

A

**

F2{v00 + v11, v01 + v10}

∇

TT

B

��

F2{v00 + v10, v11 + v01}

∇

jj

C

yy
F2{v00, v11, v01, v10}.

AT

jj

BT

TT

CT

99

The final case looking at F2[G/H2×G/H3] is similar. Therefore, in our trigraded

complex of Mackey functors we can view each of these three fixed-point Mackey

functors corresponding to F2[G]-modules isomorphic to F2[G/e] as

F2

∆

''

∆

��

∆

��
= F2

2

∇

AA

A

''

F2
2

∇

TT

B

��

F2
2

∇

gg

C

��
F4

2.

AT

gg

BT

TT

CT

AA

Finally, the fixed-point Mackey functor corresponding to the F2[G]-module

F2[2G/e] = F2[G/H1 × G/H2 × G/H3] can be viewed as the direct sum of two

copies of the above Mackey functor whereby we square each F2-vector space

on the various levels of the Mackey functor, and each transfer or restriction map

F in becomes the transfer or restriction map given by the block matrix[
F 0

0 F

]
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in the Mackey functor . By viewing ∆: F2 → F2
2 as the matrix

[
1

1

]
and ∇ : F2

2 →
F2 as the matrix [1 1], note that

B =

[
∆ 0

0 ∆

]
and BT =

[
∇ 0

0 ∇

]
.

To obtain these transfer and restriction maps, we are writing elements in F2[G/H1×
G/H2 ×G/H3] as zijk = (ai, bj, ck) for 0 ≤ i, j, k ≤ 1 and using the basis

{z000, z101, z011, z110, z111, z010, z100, z001}

of F2[2G/e], which gives us the bases

{z000 + z011, z101 + z110, z111 + z100, z010 + z001},

{z000 + z101, z011 + z110, z111 + z010, z100 + z001},

{z000 + z110, z101 + z011, z111 + z001, z010 + z100},

{z000 + z101 + z011 + z110, z111 + z010 + z100 + z001}

of F2[2G/e]H1 , F2[2G/e]H2 , F2[2G/e]H3 and F2[2G/e]G respectively. We now

need to understand the differentials in our triple complex of Mackey functors.

Let d1, d2 and d3 denote the differentials for the bottom levels of the singly-

graded chain complexes of fixed-point Mackey functors computing π∗(Σ
pσ1HF2),

π∗(Σ
qσ2HF2) and π∗(Σ

rσ3HF2) respectively. Then, the differential for the bot-

tom level of our triple complex of fixed-point Mackey functors with homology

π∗(Σ
pσ1+qσ2+rσ3HF2) is given by

d = d1 + d2 + d3,

noting for example that when we apply d1 to an element of the bottom level of a

Mackey functor in our triple complex it acts as the identity on each component

of the tensor product that does not come from the singly graded chain complex

of Mackey functors computing π∗(Σ
pσ1HF2). The differentials at higher levels of

our Mackey functors are given by applying the differentials d1, d2 and d3 at the

bottom level and then taking fixed points.

The fixed points of these three differentials d1, d2 and d3 can be computed

explicitly using our above bases in a similar manner to the proof of Theorem 3.10.

For example, to compute the differential → corresponding to d1 given by
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(1 + t2)× id× id, we first observe that at the bottom level we have that

z000 7→ z000 + z100, z111 7→ z111 + z011,

z101 7→ z101 + z001, z010 7→ z010 + z110,

z011 7→ z011 + z111, z100 7→ z100 + z000,

z110 7→ z110 + z010, z001 7→ z001 + z101.

If we take H1-fixed points, i.e. extend this map linearly to the basis elements of

F2[G/e]H1 , we see that

z000 + z011 7→ z000 + z011 + z111 + z100, z111 + z100 7→ z000 + z011 + z111 + z100

z101 + z110 7→ z101 + z110 + z010 + z001, z010 + z001 7→ z101 + z110 + z010 + z001,

and hence we are left with the 4 × 4 block matrix
[
AT

AT

]
. If we instead take H2

or H3-fixed points, then in either case we get the matrix
[
CT

CT

]
. If we take G-

fixed points, then we get the matrix
[
∇
∇

]
=
[

1 1

1 1

]
. In general, consider the chain

complex of Mackey functors

← ← ← ← · · ·

associated to di for some fixed i ∈ {1, 2, 3}. Then, the G/Hi level of this chain

complex of Mackey functors is given by

F2
2

AT←−− F4
2

[
AT

AT

]
←−−− F4

2

[
AT

AT

]
←−−− · · ·

and the G/Hj level for each j 6= i is given by

F2
2

CT←−− F4
2

[
CT

CT

]
←−−− F4

2

[
CT

CT

]
←−−− · · ·

Furthermore, the G/G level of this chain complex of Mackey functors is given by

F2
∇←− F2

2

[
∇
∇

]
←−− F2

2

[
∇
∇

]
←−− · · ·

Note that we are not explicitly giving the differentials at the bottom level of our

chain complex of Mackey functors as we already know the bottom and middle

levels of πFHF2 as well as the transfer and restriction maps between them from

the C2-equivariant calculation in Chapter 3, as discussed earlier in this section.

Next, consider the chain complex of Mackey functors

← ← ← ← · · ·
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associated to d1. Then, using our bases for the various levels of these Mackey

functors (in particular we are looking at our earlier basis for F2[G/H1 ×G/H2]),

we see that both the G/H1 and G/H3 levels of this chain complex of Mackey

functors are given by

F2
∇←− F2

2

[
∇
∇

]
←−− F2

2

[
∇
∇

]
←−− · · ·

and the G/H2 level is given by

F2
2

0←− F2
2

0←− F2
2

0←− · · ·

Finally, we see that the G/G level is given by the chain complex

F2
0←− F2

0←− F2
0←− · · ·

The result is symmetric for the various other singly-graded chain complexes con-

tained in our trigraded complex of Mackey functors of the form

← ← ← ← · · ·

or

← ← ← ← · · ·

Note that so far we have been discussing the trigraded complex of Mackey functors

computing π∗(Σ
pσ1+qσ2+rσ3HF2) for p, q, r ≥ 0. However, if at least one of p, q

or r is negative then the corresponding trigraded complex of Mackey functors

will have reversed arrows in at least one of the three directions compared to our

trigraded complex for actual representations, which comes from the fact that

we will be taking the tensor product with one of the dual singly-graded chain

complexes of Mackey functors constructed earlier in this section. For example,

if we are looking at π∗(Σ
pσ1−qσ2−rσ3HF2) where p ≥ 0 and q, r ≥ 1, then our

trigraded complex of Mackey functors now looks as follows:

//

��
OO

//

��
OO

��
OO

//
OO

//
OO OO

//

��
OO

//

��
OO

��
OO

//
OO OO

//
OO

//

��

//

�� ��
// //
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The arrows in one of these trigraded complexes of Mackey functors that are

reversed when compared to the trigraded complex for actual representations can

be computed similarly using the same bases at each level of these fixed-point

Mackey functors from before, and using our earlier description of the differentials

at the bottom level of one of the dual singly-graded complexes computing either

π∗(Σ
−pσ1HF2), π∗(Σ

−qσ2HF2) or π∗(Σ
−rσ3HF2) where p, q, r ≥ 1. In particular,

suppose that our trigraded complex of Mackey functors contains the dual chain

complex

→ → → → · · ·

associated to di for some fixed i ∈ {1, 2, 3}. Then similar to before, the G/Hi

level of this chain complex of Mackey functors is given by

F2
2
A−→ F4

2

[A A]−−−−→ F4
2

[A A]−−−−→ · · ·

and the G/Hj level for each j 6= i is given by

F2
2
C−→ F4

2

[C C]−−−−→ F4
2

[C C]−−−−→ · · ·

The G/G level of this chain complex of Mackey functors is given by

F2
∆−→ F2

2

[∆ ∆]−−−−→ F2
2

[∆ ∆]−−−−→ · · ·

Next, consider the dual chain complex

→ → → → · · ·

associated to d1, so in particular we view as being the fixed-point Mackey

functor associated to the F2[G]-module F2[G/H1×G/H2]. The G/H1 and G/H3

levels of this chain complex of Mackey functors are given by

F2
∆−→ F2

2

[∆ ∆]−−−−→ F2
2

[∆ ∆]−−−−→ · · ·

and the G/H2 level is given by

F2
2

1−→ F2
2

0−→ F2
2

0−→ · · ·

Similarly, we see that the G/G level is given by

F2
1−→ F2

0−→ F2
0−→ · · ·
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We have now constructed for each (p, q, r) ∈ Z3 a trigraded complex of fixed-

point Mackey functors whose homology is precisely π∗(Σ
pσ1+qσ2+rσ3HF2). How-

ever, even though we can ignore the bottom levels of these Mackey functors as

we already know the G/e and G/Hi levels and the transfer and restriction maps

between them in π∗(Σ
pσ1+qσ2+rσ3HF2), computing the homology of this triple

complex (with respect to the total differential) in general is difficult due to the

large powers of F2 in the total complex at the top and middle levels. The remain-

der of this chapter discusses ways that we can overcome this issue of computing

the homology of this large chain complex mainly through the lens of the multi-

plicative structure of πFHF2.

4.3 The Poincaré series of Holler-Kriz and du-

ality

The additive structure of the top level πGFHF2 is computed in [2], and the authors

present the result in the form of Poincaré series encoding the dimensions of the

F2-vector spaces appearing in each degree. From the perspective of Section 4.2,

these Poincaré series can be obtained by computing the homology of the top level

of the trigraded complex of Mackey functors associated to a given (p, q, r) ∈ Z3.

When we focus at a single level of our trigraded complex, the homology can be

computed by iteratively running the spectral sequence of a double complex.

Recall that in general if C = C∗,∗ is a double complex, then we have two

homological spectral sequences

E2
s,t = Hs(Ht(C, d

v), dh)⇒ Hs+t(C, d
v + dh)

and

E2
s,t = Hs(Ht(C, d

h), dv)⇒ Hs+t(C, d
v + dh)

converging to the homology of C with respect to the total differential d = dv+dh,

where the horizontal differential dh decreases the first grading by one and the

vertical differential dv decreases the second grading by one. However, when dis-

cussing πGFHF2 we are dealing with complexes with three gradings, so as men-

tioned above we will need to use the spectral sequence of a double complex iter-

atively. That is, we first run the spectral sequence for the double complex given

by setting one of the three gradings to be zero, and then we run the spectral se-

quence again for the double complex which in one direction is given by the third
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grading we set before to be zero and in the other direction is the total complex

of the previous double complex. We will show explicitly how this is done in the

case of computing πG∗ (Σpσ1+qσ2+rσ3HF2) for p, q, r ≥ 0.

Theorem 4.2 (Holler-Kriz). Suppose that p, q, r ≥ 0. Then, the Poincaré series

for πG∗ (Σpσ1+qσ2+rσ3HF2) is given by

(1+· · ·+xp)(1+· · ·+xq)(1+· · ·+xr)−x2(1+· · ·+xp−1)(1+· · ·+xq−1)(1+· · ·+xr−1).

Remark 4.3. In the above Poincaré series, the coefficient of xi is the dimension

of the F2-vector space at degree i. Furthermore, we have re-written the form of

the Poincaré series given in [2] to make it symmetric in p, q and r.

Proof. As discussed in Section 4.2, the top level of the trigraded complex of

Mackey functors computing π∗(Σ
pσ1+qσ2+rσ3HF2) is given by the triple complex

• •== •==
• oo •• oo

��

••

��
• •== •==

• oo ••

��

oo ••

��
• • •

• • •

Note that each • represents a copy of F2 and each •• represents a copy of F2
2, and

the differentials were given in Section 4.2. Now, we want to compute the homol-

ogy of this triple complex with respect to the total differential d = d1 + d2 + d3.

Using the spectral sequence of a double complex, there are six ways to compute

the homology πG∗ (Σpσ1+qσ2+rσ3HF2). For example, we can first take homology

with respect to d1 and run the spectral sequence of a double complex converging

to the homology with respect to d1 + d2, and then take homology with respect to

d3 and run the spectral sequence of a double complex converging to the homology

with respect to d1 + d2 + d3 = d. The other five ways of iteratively using the

spectral sequence of a double complex correspond to the other five permutations

of d1, d2 and d3.

To compute the homology πG∗ (Σpσ1+qσ2+rσ3HF2), we will first run the spec-

tral sequence converging to the homology with respect to d1 + d2 where we first

compute homology with respect to d1, recalling from our above diagram of the

triple complex the differential d1 points to the left. The E1-page of this spectral
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sequence then looks as follows:

• • •

•

• • •

•

• • •

• • •
We see that there are no higher differentials, so the spectral sequence collapses on

the E1-page. Furthermore, there are no non-zero differentials in the σ3-direction,

so the above diagram tells us the complete homology πG∗ (Σpσ1+qσ2+rσ3HF2) geo-

metrically as three adjacent faces of a cube with side lengths p + 1, q + 1 and

r+ 1. More precisely, each point (with integer coordinates) inside this cube gives

us a term in the Poincaré series, so if we were looking at the whole cube then we

would have the Poincaré series

(1 + · · ·+ xp)(1 + · · ·+ xq)(1 + · · ·+ xr).

However, looking at our above diagram we need to remove the cube represented

by

x2(1 + · · ·+ xp−1)(1 + · · ·+ xq−1)(1 + · · ·+ xr−1)

sitting inside it, so we have that the Poincare series for πG∗ (Σpσ1+qσ2+rσ3HF2) is

given by

(1+· · ·+xp)(1+· · ·+xq)(1+· · ·+xr)−x2(1+· · ·+xp−1)(1+· · ·+xq−1)(1+· · ·+xr−1).

Note that the Poincaré series given in Theorem 4.2 is symmetric in p, q and

r as one would expect, but it can also be re-written in a more concise form as

(1 + · · ·+ xp)(1 + · · ·+ xq) + (1 + · · ·+ xp+q)(x+ · · ·+ xr),

although this polynomial is no longer symmetric in p, q and r. This form of the

Poincaré series can be obtained by instead looking at the horizontal cross sections

of our above diagram of the E1-page. If we want to compute πG∗ (ΣVHF2) for

virtual (or non-actual) representations V = pσ1 + qσ2 + rσ3, then our spectral

sequences do not generally collapse on the E1-page as in the proof of Theorem

4.2. For convenience, we list the Poincaré series for virtual representations below

as presented in [3, Section 2.6].
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Theorem 4.4 (Holler-Kriz). Suppose that p, q, r ≥ 1. Then, the Poincaré series

for πG∗ (Σ−pσ1−qσ2−rσ3HF2) is given by

1

xp+q+r
[(1+x+ · · ·+xq+r−2)(1+ · · ·+xp−2)+xp−1(1+ · · ·+xr−1)(1+ · · ·+xq−1)].

Theorem 4.5 (Holler-Kriz). Suppose that p, q ≥ 0 and r ≥ 1. Then, the Poincaré

series for πG∗ (Σpσ1+qσ2−rσ3HF2) is given by(
1

xr
+ · · ·+ 1

x

)
(1 + x+ · · ·+ xr−2) + xr(1 + · · ·+ xp−r)(1 + · · ·+ xq−r).

Theorem 4.6 (Holler-Kriz). Suppose that p ≥ 0 and q, r ≥ 1. Then, the Poincaré

series for πG∗ (Σpσ1−qσ2−rσ3HF2) is given by

1

xq+r−p
(1 + · · ·+ xq−p−2)(1 + · · ·+ xr−p−2) +

1

xp+1
(1 + · · ·+ xp)(1 + · · ·+ xp−1)

in the case that q, r ≥ p+ 1, and is given by

1

xq
(1 + · · ·+ xq−2)(1 + · · ·+ xp−r) +

1

xr
(1 + · · ·+ xp−1)(1 + · · ·+ xr−1)

in the case that p ≥ r, and the case where p ≥ q is symmetric.

The relevant triple complexes for Theorems 4.4, 4.5 and 4.6 are given respec-

tively by

•
~~

// •
||

•
||

• // •• //
OO ••OO

•
~~

//
OO •

||
OO •

||
OO

• //
OO ••OO // ••OO
•
~~

// •
||

•
||• // • •

• •<< •<<
• oo •• ooOO ••OO
•OO •<< OO •<< OO

• ooOO ••OO oo ••OO
• • •

• • •

•
~~

•
||

•
||

• oo •• ooOO ••OO
•
~~
OO •

||
OO •

||
OO

• ooOO ••OO oo ••OO
•
~~

•
||

•
||• • •

Now, one might hope to use the spectral sequence of a double complex on the level

of Mackey functors in order to compute explicitly the complete Mackey functor

homotopy πFHF2. However, when we are working with this spectral sequence of

Mackey functors we run in to the problem of exotic transfers and exotic restric-

tions. That is, when we reach the E∞-page of our spectral sequence of Mackey

functors there may be non-zero transfers or restrictions that are not visible due

to them being in higher filtration, although in many cases we can resolve this

problem using Proposition 2.15 or that πFHF2 consists of cohomological Mackey

functors.
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Example 4.7. Suppose that we want to compute the Mackey functor homotopy

π∗(Σ
−σ1−σ2−σ3HF2). By Theorem 4.4 we know that the top level contains only a

copy of F2 in degree −3. Now, in this case our triple complex of Mackey functors

is given by
//

��
OO

��
OO

//
OO OO

//

�� ��
//

Note that we can ignore the G/e levels of these Mackey functors and the transfer

and restriction maps between the G/e and G/Hi levels in π∗(Σ
−σ1−σ2−σ3HF2)

since we already know these as discussed in Section 4.2. If we take homology in

the σ1-direction, and then in the σ2-direction and finally in the σ3-direction, we

are left with the partial Mackey functor

F2

F2

>>

F2

OO

F2

``

in degree −3 (and zero in every other degree). However, we want to determine

whether there are also non-zero restriction maps in this portion of the (C2×C2)-

Mackey functor π−3(Σ−σ1−σ2−σ3HF2). If there was a non-zero restriction map

ResGHi for some i ∈ {1, 2, 3}, then we must have that ResGHi : F2 → F2 is the

identity map. But by Proposition 2.15 we know that

ResGHi ◦ TrGHi =
∑

γ∈WHi
(G)

γ

which is therefore the zero map as the action of the Weyl group WHi(G) on the

F2 at the G/Hi level is trivial, so we have reached a contradiction. Note that

we could have alternatively deduced that there are no restrictions maps using

that this Mackey functor is cohomological, and so the composite TrGHi ◦ ResGHi is

multiplication by the index [G : Hi] = 2, i.e. is the zero map.

Hence, since the restriction of π−3(Σ−σ1−σ2−σ3HF2) to any of the C2-subgroups

Hi is the C2-Mackey functor π−2(Σ−2σHF2) which we know from Chapter 3, it

follows that the only non-zero homotopy Mackey functor in π∗(Σ
−σ1−σ2−σ3HF2)

is the dual constant Mackey functor F∗2 in degree −3.

Using the calculation of Example 4.7 and Anderson duality, we can now ex-

plain as in Chapter 3 how for every (p, q, r) ∈ Z3 we have that Theorem 4.4 follows
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from Theorem 4.2 and the three symmetric versions of Theorem 4.6 follow from

the three symmetric versions of Theorem 4.5, and more generally on the level of

Mackey functors.

Proposition 4.8 (Guillou-Yarnall). As (C2×C2)-spectra, we have that Σ4HF2 '
ΣρHF∗2.

Remark 4.9. This twisting is proved in [3, Proposition 4.2], but we present an

alternative proof here that is analogous to the proof of Proposition 3.8.

Proof. It suffices to show that Σ4−ρHF2 ' HF∗2, and by the uniqueness of

Eilenberg-MacLane spectra we just need to show that they have the same ho-

motopy Mackey functors. First, note that

πk(Σ
4−ρHF2) = πk(Σ

3−σ1−σ2−σ3HF2)

= πk−3(Σ−σ1−σ2−σ3HF2).

Now, from Example 4.7 (or alternatively by the result of Theorem 4.35) we know

that

πk−3(Σ−σ1−σ2−σ3HF2) =

F∗2 if k − 3 = −3,

0 otherwise.

Therefore, it follows that

πk(Σ
4−ρHF2) =

F∗2 if k = 0,

0 otherwise

which are precisely the homotopy Mackey functors of HF∗2.

Recall by Proposition 3.9 (applied now to (C2×C2)-Mackey functors) that if

M is any F2-module, then the Anderson dual IF2HM of the Eilenberg-MacLane

spectrum HM is precisely HM∗. That is, by our characterisation of the Anderson

dual of an HF2-module from Section 3.2 we have that

πV (HM∗) ∼= (π−VHM)∗.

Let k, p, q, r ∈ Z be arbitrary. Then, by the above discussion we have that

(πk(Σ
pσ1+qσ2+rσ3HF2))∗ = (πk−pσ1−qσ2−rσ3

(HF2))∗

∼= π−k+pσ1+qσ2+rσ3
(HF∗2)

= π−k(Σ
−pσ1−qσ2−rσ3HF∗2).
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However, by Proposition 4.8 we have that Σ3−σ1−σ2−σ3HF2 ' HF∗2. That is,

π−k(Σ
−pσ1−qσ2−rσ3HF∗2) ∼= π−k(Σ

3−(p+1)σ1−(q+1)σ2−(r+1)σ3HF2)

= π−k−3(Σ−(p+1)σ1−(q+1)σ2−(r+1)σ3HF2).

Hence, we have shown that

πk(Σ
pσ1+qσ2+rσ3HF2) ∼= (π−k−3(Σ−(p+1)σ1−(q+1)σ2−(r+1)σ3HF2))∗.

In particular, this explains how we can view Theorems 4.4 and 4.6 as corollaries

of Theorems 4.2 and 4.5 respectively, where we only look at the top levels of these

homotopy Mackey functors, noting that for every n ≥ 1 we indeed have that

Hom(Fn2 ,F2) ∼= Fn2 ,

recalling that the top levels of our homotopy Mackey functors are always finite-

dimensional F2-vector spaces.

4.4 The ring structure of the positive cone

In this section we will compute the complete Mackey functor structure of the

homotopy π∗(Σ
VHF2) for actual representations V , and we express our answer

as a single Mackey functor of RO(G)-graded rings which will in fact be an RO(G)-

graded Green functor. In particular, we derive the ring structure of the top level

πG∗ (ΣVHF2) for actual representations V with additive structure given previously

by Theorem 4.2. First, we introduce some analogous terminology from Chapter

3 that will be used throughout the remainder of this chapter.

Definition 4.10. The positive cone is the subring of πGFHF2 given by the direct

sum of all πG∗ (ΣVHF2) for V an actual representation ofG, i.e. V = pσ1+qσ2+rσ3

with p, q, r ≥ 0.

That is, using the terminology of Definition 4.10 our goal in this chapter is to

compute the complete Mackey functor structure of the positive cone.

Definition 4.11. The negative cone is the subring of πGFHF2 given by the direct

sum of all πG∗ (ΣVHF2) for V = pσ1 + qσ2 + rσ3 with p, q, r ≤ −1.

If we are not in the positive cone or the negative cone, then we are in one of

the six mixed cones, i.e. when V = pσ1 + qσ2 + rσ3 is such that not all of p, q

and r have the same sign.
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Definition 4.12. If exactly one of p, q and r are negative then we are in one

of the three mixed cones of Type I, and if exactly two of p, q and r are negative

then we are in one of the three mixed cones of Type II.

We will only look at the positive cone in this section because it has the simplest

ring structure, but our method of deriving this ring structure will give us insights

into how we should be viewing the negative cone as well as the six mixed cones.

Before we do this however, we introduce some further terminology (which applies

not just to the positive cone).

Definition 4.13. We say that πGi (ΣVHF2) has tridegree (p, q, r) if V = pσ1 +

qσ2 + rσ3 and we say that it has topological degree i.

Moreover, we will refer to the triple complex (from Section 4.2) whose ho-

mology is πG∗ (Σpσ1+qσ2+rσ3HF2) as the triple complex at tridegree (p, q, r) and

similarly for the topological degree.

For each i ∈ {1, 2, 3}, let xi be the generator of πG0 (Sσi ∧ HF2) ∼= F2 and

let yi be the generator of πG1 (Sσi ∧ HF2) ∼= F2. By a similar argument to the

ring structure in the C2-equivariant case from Chapter 3, we know that the ring

structure of πGFHF2 whenF contains only non-negative multiples of σi (and does

not contain non-zero multiples of σj for j 6= i) is given by the polynomial ring

F2[xi, yi]. This can also be seen (assuming that i = 1) by using the ring structure

of the positive cone in πC2
F HF2 from Chapter 3 and that the restriction map ResGH2

is a ring map that is non-zero on non-zero elements in π∗(S
pσ1 ∧HF2), where the

restriction map being a ring map follows since πFHF2 is an RO(G)-graded Green

functor.

One would hope that when we involve σ1, σ2 and σ3 at once, then each non-

zero class in homology is given by some product of these six classes, and indeed

this is true modulo a single relation.

Theorem 4.14. The positive cone in πGFHF2 is given by the ring

F2[x1, y1, x2, y2, x3, y3]

(x1y2y3 + y1x2y3 + y1y2x3)
,

with the classes xi and yi for 1 ≤ i ≤ 3 defined as above.

Proof. Let C be the trigraded triple complex from the proof of Theorem 4.2 whose

homology gives the positive cone. Then, we have a direct sum decomposition

C = R1 ⊕R2,
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where R1 and R2 are defined as follows. Using the notation from Section 4.2, the

elements of R1 are precisely the generators z000 + z101 + z011 + z110 of each copy of

F2[2G/e]G ∼= F2
2 in C. The elements of R2 consist of the generators of each copy

of F2[G/G]G and F2[G/Hi]
G ∼= F2 for i ∈ {1, 2, 3}, the generators of each copy of

F2[G/e]G ∼= F2, and the diagonal elements

(z000 + z101 + z011 + z110) + (z111 + z010 + z100 + z001)

of each copy of F2[2G/e]G ∼= F2
2 in C. This direct sum decomposition of our

trigraded triple complex C is shown visually below.

R1 :

• •<< •<<
• oo •• oo

��

••

��
• •<< •<<

• oo ••

��

oo ••

��
• • •

• • •

R2 :

• •<< •<<
• oo •• oo

��

••

��
• •<< •<<

• oo ••

��

oo ••

��
• • •

• • •

Note that •• in the above diagram of the direct summand R2 denotes only the

diagonal element of the corresponding copy of F2
2.

As in the proof of Theorem 3.10, the ring structure of the positive cone is

induced by taking the tensor product of the F2[G]-modules on the G/e levels of

the trigraded complexes of Mackey functors and then taking fixed points. How-

ever, when we want to multiply elements of the subrings F2[x1, y1], F2[x2, y2] and

F2[x3, y3], we are only tensoring singly-graded complexes together. So, since for

each 1 ≤ i ≤ 3 we know that xnii y
mi
i is represented by the sum of the cosets

Hi + tjHi ∈ F2[G/Hi]
G (where j 6= i), it follows that for all 1 ≤ i 6= j ≤ 3 we

have that the product xnii y
mi
i x

nj
j y

mj
j is represented by the generator

(Hi, Hj) + (tjHi, Hj) + (Hi, tiHj) + (tjHi, tiHj) ∈ F2[G/H1 ×G/H2]G,

and the product xn1
1 y

m1
1 xn2

2 y
m2
2 xn3

3 y
m3
3 is represented by the diagonal element in

F2[2G/e]G ∼= F2
2, where ni,mi ≥ 0 for each 1 ≤ i ≤ 3.

Therefore, if we let 1 denote the generator of the unique copy of F2 at tridegree

(0, 0, 0), it follows that

R2 = F2[x1, y1, x2, y2, x3, y3]{1}.

Now, let Ξ denote the unique element in R1 at tridegree (1, 1, 1). The portion of
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C at tridegree (1, 1, 1) is shown below.

x1x2y3•
y1x2y3•<<

x1y2y3• oo y1y2y3••
Ξ

��

x1x2x3•
y1x2x3•

x1y2x3•
y1y2x3•

So, letting d = d1 + d2 + d3 as in the proof of Theorem 4.2, we see that

d(Ξ) = (x1y2y3 + y1x2y3 + y1y2x3) · 1.

Notice that we can view R1 as an R2-module generated by Ξ, i.e. that

R1 = F2[x1, y1, x2, y2, x3, y3]{Ξ}.

Indeed, we see that any element ξ in R1 satisfies

d(ξ) = m(x1y2y3 + y1x2y3 + y1y2x3) · 1

for a unique monomial m in F2[x1, y1, x2, y2, x3, y3], and furthermore given any

monomial m there is a unique such ξ, so by the Leibniz rule (noting that the

trigraded triple complex C is a differential graded algebra under tensor product

at the G/e level) we can therefore label ξ with m · Ξ since

d(mΞ) = d(m)Ξ +md(Ξ)

= m(x1y2y3 + y1x2y3 + y1y2x3) · 1

as d(m) = 0. Hence, we have that the differential d is a map of F2[x1, y1, x2, y2, x3, y3]-

modules determined by d(Ξ) = (x1y2y3 + y1x2y3 + y1y2x3) · 1. The positive cone

is the homology of the chain complex

R1
d−→ R2

concentrated in degrees 0 and 1, so since this map is injective the homology is

given by the cokernel of this map, which is precisely the ring

F2[x1, y1, x2, y2, x3, y3]

(x1y2y3 + y1x2y3 + y1y2x3)
.
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Using the result of Theorem 4.14 and that πFHF2 is an RO(G)-graded Green

functor, we can now compute all the homotopy Mackey functors π∗(Σ
VHF2) for

actual representations V = pσ1 +qσ2 +rσ3. Note that we will give a more explicit

computation of the homotopy Mackey functors in the positive cone in Section 4.7

that is generalisable in computing the homotopy Mackey functors in the negative

and mixed cones, though in this section we show how the full Mackey functor

structure of the positive cone can be derived with little computation.

Theorem 4.15. The Mackey functor structure of the positive cone in πFHF2 is

given by the Mackey functor of RO(G)-graded rings

F2[x1,y1,x2,y2,x3,y3]
(x1y2y3+y1x2y3+y1y2x3)

((��vv
F2[y1,x2,y2,x3,y3]

(x2y3+y2x3)

((

F2[x1,y1,y2,x3,y3]
(x1y3+y1x3)

��

F2[x1,y1,x2,y2,y3]
(x1y2+y1x2)

,

vv
F2[y1, y2, y3]

where each restriction map is the identity on a generator of the domain that is also

a generator of the codomain and is zero on a generator otherwise. The transfer

maps are always zero.

Remark 4.16. Since the restriction maps in the above Mackey functor of RO(G)-

graded rings are ring maps and the transfer maps are all zero, the Mackey functor

is an RO(G)-graded Green functor.

Proof. We already know that the top level of this Mackey functor is the positive

cone as an RO(G)-graded ring by Theorem 4.14. We first look at the restriction

maps ResGH1
, ResGH2

and ResGH3
. By symmetry, it suffices to consider ResGH1

and we

begin by looking at ResGH1
(xi) and ResGH1

(yi) for i ∈ {1, 2, 3}. The chain complex

of Mackey functors computing π∗(S
σ1 ∧ HF2) is given by (noting that we only

draw the G/G, G/H1 and G/e levels)

x1

F2

1

��

y1

F2

∆

��

0oo

F2[G/G]

0

TT

1

��

F2[G/H1]

∇

TT

1

��

∇oo

F2[G/G]

0

TT

F2[G/H1].

0

TT

∇oo
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So, we see that ResGH1
(x1) is zero in homology but that ResGH1

(y1) is non-zero in

homology, and thus we will identify ResGH1
(y1) with y1. Similarly, the G/G, G/H1

and G/e levels of the chain complex of Mackey functors computing π∗(S
σ2∧HF2)

is given by
x2

F2

1

��

y2

F2

1

��

0oo

F2

0

TT

1

��

F2

0

TT

∆

��

0oo

F2[G/G]

0

TT

F2[G/H2].

∇

TT

∇oo

Therefore, we see that ResGH1
(x2) and ResGH1

(y2) are both non-zero in homol-

ogy, and we identify ResGH1
(x2) with x2 and ResGH1

(y2) with y2. Similarly, both

ResGH1
(x3) and ResGH1

(y3) are non-zero in homology and we identify ResGH1
(x3)

with x3 and ResGH1
(y3) with y3. Since πFHF2 is an RO(G)-graded Green functor,

we know that ResGH1
is a ring map and thus for any monomial xi11 y

j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3

in F2[x1, y1, x2, y2, x3, y3] we have that

ResGH1
(xi11 y

j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3 ) =

0 if i1 > 0,

yj11 x
i2
2 y

j2
2 x

i3
3 y

j3
3 otherwise.

Now, as in the statement of the theorem we want to show that the G/H1 level of

the positive cone in πFHF2 is given by the RO(G)-graded ring

F2[y1, x2, y2, x3, y3]

(x2y3 + y2x3)
.

To do this, note that if V = pσ1 + qσ2 + rσ3 is an actual representation, then as

discussed in Section 4.2 we have for every k that

πH1
k (Σpσ1+qσ2+rσ3HF2) ∼= πC2

k (Σp+(q+r)σHF2).

That is, the G/H1 level of the homology at tridegree (p, q, r) is given by a shift

(by p trivial suspensions) of the C2-equivariant homology at degree q + r from

Chapter 3, i.e. unlike in Chapter 3 the middle levels of our homotopy Mackey

functors carry some redundant gradings. In particular, recalling from Theorem

3.10 that the positive cone in πC2
F HF2 is given by the polynomial ring F2[x, y], the

restriction ResGH1
(y1) (which we also denote by y1) is identified with the element

1 ∈ F2[x, y], the restrictions ResGH1
(x2) and ResGH1

(x3) (which we also denote by
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x2 and x3 respectively) are both identified with x, and the restrictions ResGH1
(y2)

and ResGH1
(y3) (which we also denote by y2 and y3 respectively) are both identified

with y. Therefore, since x and y generate the positive cone in πC2
F HF2 it follows

that the restrictions y1, x2, y2, x3 and y3 generate the G/H1 level of the positive

cone in πFHF2.

Now, we know from Theorem 3.10 that the homology πC2
∗ (Σp+(q+r)σHF2)

contains q + r + 1 copies of F2 generated by xq+r, xq+r−1y, . . . , yq+r in degrees

p, p + 1, . . . , p + q + r respectively. However, an arbitrary element in the homol-

ogy πH1
∗ (Σpσ1+qσ2+rσ3HF2) at the G/H1 level is given by yp1x

q−k
2 yk2x

r−`
3 y`3, which

as discussed above is identified with the element xq+r−(k+`)yk+` ∈ F2[x, y]. As-

suming that at least one of k or r is strictly between 0 and q + r, we see that

both yp1x
q−k
2 yk2x

r−`
3 y`3 and yp1x

q−(k−1)
2 yk−1

2 x
r−(`+1)
3 y`+1

3 or both yp1x
q−k
2 yk2x

r−`
3 y`3 and

yp1x
q−(k+1)
2 yk+1

2 x
r−(`−1)
3 y`−1

3 are identified with xq+r−(k+`)yk+` ∈ F2[x, y], which im-

plies that

yp1x
q−k
2 yk−1

2 x
r−(`+1)
3 y`3(x2y3 + y2x3) = 0

and

yp1x
q−(k+1)
2 yk2x

r−`
3 y`−1

3 (x2y3 + y2x3) = 0

respectively. In particular, taking p = 0 and q = r = 1 we see that we have the

relation x2y3+y2x3 = 0, and all other relations are multiples of this relation. Note

that indeed the restriction map ResGH1
preserves the relation x1y2y3 + y1x2y3 +

y1y2x3 = 0 at the top level as

ResGH1
(x1y2y3 + y1x2y3 + y1y2x3) = y1(x2y3 + y2x3) = 0.

Now that we have deduced the RO(G)-graded ring structure of the G/H1 level of

the positive cone in πFHF2 as well as the restriction map ResGH1
, we next want to

show that the transfer map TrGH1
is zero in the positive cone. To do this, consider

an arbitrary monomial yj11 x
i2
2 y

j2
2 x

i3
3 y

j3
3 in the ring F2[y1, x2, y2, x3, y3]/(x2y3+y2x3).

Since the homotopy Mackey functors in πFHF2 are cohomological, we know that

TrGH1
◦ ResGH1

is multiplication by the index [G : H1] = 2, i.e. is the zero map.

Hence, we see that

TrGH1
(yj11 x

i2
2 y

j2
2 x

i3
3 y

j3
3 ) = TrGH1

(ResGH1
(yj11 x

i2
2 y

j2
2 x

i3
3 y

j3
3 ))

= 0,

which is precisely what we wanted to show. As mentioned before, all of the above

reasoning is symmetric if we want to look instead at the subgroups H2 or H3.
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Now, the fact that we can write the G/e level of the positive cone in πFHF2 as

the RO(G)-graded ring F2[y1, y2, y3] follows since if we look at our above diagrams

of the G/G, G/H1 and G/e levels of the chain complexes of Mackey functors

computing π∗(S
σ1 ∧HF2) and π∗(S

σ2 ∧HF2), we see that ResH1
e (xi) for i ∈ {2, 3}

is zero in homology and ResH1
e (yi) is non-zero in homology which we identify with

yi for each i ∈ {1, 2, 3}. The transfer and restriction maps between the G/Hi and

G/e levels follow from the C2-equivariant case given by Corollary 3.13.

Remark 4.17. Note that in the proof of Theorem 4.15 there is an alternative

argument for showing that the transfer maps are all zero that does not involve

the concept of cohomological Mackey functors. Indeed, note that the element 1

in the RO(G)-graded ring F2[y1,x2,y2,x3,y3]
(x2y3+y2x3)

is the restriction ResGH1
(1) of the element

1 ∈ πG0 (S0∧HF2), and we know as discussed in Section 4.2 that π0(S0∧HF2) is the

constant Mackey functor F2, which has zero transfers and thus TrGH1
(1) = 0. Since

πFHF2 is an RO(G)-graded Green functor, we have by Frobenius reciprocity that

TrGH1
(yj11 x

i2
2 y

j2
2 x

i3
3 y

j3
3 ) = TrGH1

(1 · yj11 x
i2
2 y

j2
2 x

i3
3 y

j3
3 )

= TrGH1
(1 · ResGH1

(yj11 x
i2
2 y

j2
2 x

i3
3 y

j3
3 ))

= TrGH1
(1) · yj11 x

i2
2 y

j2
2 x

i3
3 y

j3
3

= 0.

We will now give an example to see how the Mackey functor of RO(G)-graded

rings given by Theorem 4.15 can be used to explicitly write down homotopy

Mackey functors in the positive cone.

Example 4.18. Suppose that we want to compute the homotopy Mackey func-

tors π∗(Σ
σ1+σ2+σ3HF2) at tridegree (1, 1, 1). By Theorem 4.14 we know that the

non-zero classes at the top level πG∗ (Σσ1+σ2+σ3HF2) are given as follows:

Degree 0 Degree 1 Degree 2 Degree 3

x1x2x3 y1x2x3 y1y2x3 y1y2y3

x1y2x3 x1y2y3

x1x2y3

Here x1y2y3 and y1y2x3 are the classes (or cosets) in the positive cone represented

by x1y2y3 and y1y2x3 respectively. By Theorem 4.15, we see that all restrictions

of x1x2x3 are zero. Furthermore, we see that only the restriction of y1x2x3 to the
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subgroup H1 is non-zero, and similarly only the restrictions of x1y2x3 and x1x2y3

to the subgroups H2 and H3 respectively are non-zero. Next, we see that only

the restrictions of y1y2x3 to the subgroups H1 and H2 are non-zero, and only the

restrictions of x1y2y3 to the subgroups H2 and H3 are non-zero. Finally, we see

that all restrictions of y1y2y3 are non-zero as there are no factors of x1, x2 or

x3. Therefore, we can deduce that the non-zero homotopy Mackey functors at

tridegree (1, 1, 1) are as follows:

Degree 0 Degree 1

F2 F2 ⊕ F2 ⊕ F2

pr3

$$
pr2

��

pr1

zz
0 0 0 F2 F2 F2

0 0

Degree 2 Degree 3

F2 ⊕ F2

pr2

""
∇
��

pr1

||

F2

""��||
F2 F2 F2 F2

""

F2

��

F2

||
0 F2

Note that using the notation of Definition 2.20, the Mackey functor appearing

in degree 1 is precisely the direct sum of the inflations of the constant Mackey

functor given by

φ∗H1H2H3
F2 := φ∗H1

F2 ⊕ φ∗H2
F2 ⊕ φ∗H3

F2.

In [3], the Mackey functors appearing in degrees 0, 1 and 2 are denoted by

g, φ∗LDRF2 and mg respectively, noting that the authors denote the three C2-

subgroups of G = C2 × C2 by L, D and R.

Finally, note that since we know all the homotopy Mackey functors in the

positive cone, we also know all the homotopy Mackey functors in the negative

cone by Anderson duality, as discussed in Section 4.3.
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4.5 The negative and mixed cones

We now turn our attention to virtual representations. The multiplicative struc-

ture is more complicated in these cases, just as it was in the C2-equivariant case

in Chapter 3 when we discussed the negative cone in πC2
F HF2. Again, we have

three copies of the C2-equivariant result given by πG∗ (Σpσ1HF2), πG∗ (Σqσ2HF2)

and πG∗ (Σrσ3HF2). So, for each i ∈ {1, 2, 3} let θi be the generator of πG−2(S−2σi ∧
HF2) ∼= F2 which we know is infinitely divisible by xi and yi, i.e. is divisible by

monomials in the graded polynomial ring F2[xi, yi]. As in Section 4.10, assuming

that i = 1 this follows since the restriction map ResGH2
is non-zero on non-zero

elements in πG∗ (Σ−pσ1HF2) for p ≥ 2 as seen in Section 4.2, so we can use that

ResGH2
is a ring map as well as the ring structure of the negative cone in πC2

F HF2,

noting for example that ResGH2
(θ1) is identified with θ ∈ πC2

F HF2.

Unlike the ring structure of the positive cone given by Theorem 4.14, the

negative and mixed cones contain classes that are not defined solely in terms of

our previously defined classes from the three copies of the C2-equivariant result

in πFHF2. Indeed, looking at the Poincaré series of Theorem 4.4 telling us the

additive structure of the negative cone, we see (as in Example 4.7) that at tride-

gree (−1,−1,−1) there is a single non-zero class with topological degree −3, and

we will call this class

Θ ∈ πG−3(S−σ1−σ2−σ3 ∧HF2).

The reason why this is a ‘new’ class is that the homology at each tridegree

(−1, 0, 0), (0,−1, 0) and (0, 0,−1) is zero, i.e. we know in the C2-equivariant

case that πC2
∗ (S−σ ∧HF2) is zero. Furthermore, looking at the additive structure

of the mixed cones given by the Poincaré series in Theorems 4.5 and 4.6, we can

immediately write down another six ‘new’ classes. Let

κ1 ∈ πG1 (S−σ1+σ2+σ3 ∧HF2)

κ2 ∈ πG1 (Sσ1−σ2+σ3 ∧HF2)

κ3 ∈ πG1 (Sσ1+σ2−σ3 ∧HF2)

be the unique non-zero classes (all of topological degree 1) at tridegrees (−1, 1, 1),

(1,−1, 1) and (1, 1,−1) respectively, and let

ι1 ∈ πG−1(Sσ1−σ2−σ3 ∧HF2)

ι2 ∈ πG−1(S−σ1+σ2−σ3 ∧HF2)

ι3 ∈ πG−1(S−σ1−σ2+σ3 ∧HF2)
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be the unique non-zero classes (all of topological degree−1) at tridegrees (1,−1,−1),

(−1, 1,−1) and (−1,−1, 1) respectively. The fact that each κi and ιi for i ∈
{1, 2, 3} is a ‘new’ class again follows since πC2

∗ (S−σ ∧ HF2) is zero. Now, we

claim that we can in fact pass between these seven classes by multiplying by

θ1, θ2 and θ3. Note that these seven classes are important as the negative and

mixed cones can be expressed entirely in terms of these seven classes as well as

our previously defined classes from the three copies of the C2-equivariant result

in πGFHF2.

Proposition 4.19. For each {i, j, k} = {1, 2, 3}, we have that

ιiθi = Θ and κiθj = ιk.

Proof. We first show that κiθj = ιk for each {i, j, k} = {1, 2, 3}. By symmetry,

it suffices to show that κ1θ2 = ι3, and by degree reasons we just need to show

that κ1θ2 is non-zero. Now, the homotopy Mackey functor κ1 corresponding to

the class κ1 is the constant Mackey functor F2. Note that this Mackey functor

can be derived by a similar argument to that of Example 4.7. That is, we look

at the trigraded complex of Mackey functors at tridegree (−1, 1, 1) and then take

homology in turn in the σ1, σ2 and σ3 directions and notice that the restriction

map ResGHi is non-zero for each i ∈ {1, 2, 3}, so each transfer map TrGHi must be

zero as the composite ResGHi ◦TrGHi is zero. The non-zero restrictions between the

G/Hi and G/e levels is as usual determined using the C2-equivariant result given

in Chapter 3.

Furthermore, as seen in Section 4.2 we have that the homotopy Mackey functor

corresponding to the class θ2 (namely π−2(S−2σ2 ∧HF2)) is given by

F2

  

OO

~~
θ2 = F2 `` F2

��

F2>>

F2.

Now, in order to show that κ1θ2 6= 0 it suffices to show that

ResGH3
(κ1θ2) = ResGH3

(κ1)ResGH3
(θ2) 6= 0,

where here we are using that the restriction map ResGH3
is a ring map. Looking at

the two Mackey functors κ1 and θ2, we see that ResGH3
(κ1) 6= 0 and ResGH3

(θ2) 6= 0.
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Thus, since

πH3
1 (S−σ1+σ2+σ3 ∧HF2) ∼= πC2

1 (S1 ∧HF2)

and

πH3
−2(S−2σ2 ∧HF2) ∼= πC2

−2(S−2σ ∧HF2),

it follows that ResGH3
(κ1) is identified with 1 ∈ F2[x, y] and ResGH3

(θ2) is identified

with θ, and so indeed

ResGH3
(κ1)ResGH3

(θ2) = 1 · θ = θ 6= 0.

Next, we show that ιiθi = Θ for all i ∈ {1, 2, 3}, and again by symmetry it

suffices to show that ι1θ1 = Θ. Recall from Example 4.7 that the homotopy

Mackey functor corresponding to the class Θ is the dual constant Mackey functor

F∗2. The homotopy Mackey functors corresponding to ι1 and θ1 are given by

F2 __OO

��
ι1 = F2 __ F2

��

F2

��
F2

and

F2

  ��

>>

θ1 = F2

  

F2OO F2>>

F2.

As before, the Mackey functor ι1 is obtained by looking at the trigraded complex

of Mackey functors at tridegree (1,−1,−1) and then taking homology in turn in

the σ2, σ3 and σ1 directions and using that for each i ∈ {1, 2, 3} the composite

ResGHi ◦ TrGHi is zero in this Mackey functor. Alternatively, the Mackey functor

ι1 can be obtained using our algebraic description in Section 4.7. We notice in

particular that the transfer map TrGH1
is non-zero in both the Mackey functors Θ

and θ1 and that the restriction map ResGH1
is non-zero in the Mackey functor ι1.

Thus, since

πH1
−3(S−σ1−σ2−σ3 ∧HF2) ∼= πC2

−2(S−2σ ∧HF2) = θ,

πH1
−1(Sσ1−σ2−σ3 ∧HF2) ∼= πC2

−2(S−2σ ∧HF2) = θ
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and

πH1
−2(S−2σ1 ∧HF2) ∼= πC2

0 (S0 ∧HF2) = 1,

we have that

πH1
−1(Sσ1−σ2−σ3 ∧HF2) · πH1

−2(S−2σ1 ∧HF2) = πH1
−3(S−σ1−σ2−σ3 ∧HF2)

as θ · 1 = θ. Hence, by Frobenius reciprocity it follows that

ι1θ1 = ι1 · TrGH1
(πH1
−2(S−2σ1 ∧HF2))

= TrGH1
(ResGH1

(ι1) · πH1
−2(S−2σ1 ∧HF2))

= TrGH1
(πH1
−1(Sσ1−σ2−σ3 ∧HF2) · πH1

−2(S−2σ1 ∧HF2))

= TrGH1
(πH1
−3(S−σ1−σ2−σ3 ∧HF2))

= Θ.

Remark 4.20. By Proposition 4.19, we have in particular that κiθjθk = Θ for

all {i, j, k} = {1, 2, 3}. Hence, since Θ is non-zero it follows that the products

θjθk for j, k ∈ {1, 2, 3} with j 6= k are non-zero. The result of Proposition 4.19

can also allow us to think of the class Θ as being divisible by θ1, θ2 and θ3, where

ιi =
Θ

θi
and κi =

Θ

θjθk

for each {i, j, k} = {1, 2, 3}.

We also have the following corollaries of Proposition 4.19 telling us when

various products involving the seven classes Θ, ι1, ι2, ι3, κ1, κ2 and κ3 are zero.

Corollary 4.21. If i, j ∈ {1, 2, 3} are such that i 6= j, then

ιiθj = 0.

Proof. Let k ∈ {1, 2, 3} be such that {i, j, k} = {1, 2, 3}. Then, by Proposition

4.19 we know that ιi = κkθj. However, this implies that

ιiθj = κkθ
2
j = 0

as we know that θ2
j = 0.
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Corollary 4.22. For each i ∈ {1, 2, 3}, we have that

ιiκi = 0.

Proof. Suppose for the sake of a contradiction that ιiκi is non-zero. Then, by

degree reasons we have that ιiκi = 1 where 1 denotes the single non-zero class

at tridegree (0, 0, 0) (which has topological degree 0). Let j ∈ {1, 2, 3} be such

that j 6= i. Then, multiplying both sides of the equation ιiκi = 1 by θj gives

ιiκiθj = θj. However,

ιiκiθj = κi(ιiθj) = 0

as ιiθj = 0 by Corollary 4.21. Hence, since θj on the right-hand side is a non-zero

class, we have indeed reached a contradiction.

Corollary 4.23. For each i ∈ {1, 2, 3}, we have that

Θ2 = θiΘ = κiΘ = ιiΘ = 0.

Proof. Let i ∈ {1, 2, 3} be arbitrary. By Proposition 4.19, we can write Θ = ιiθi.

So, since θ2
i = 0 we have that

Θ2 = ι2i θ
2
i = 0,

and similarly

θiΘ = θiιiθi = ιiθ
2
i = 0.

Furthermore, since κiιi = 0 by Corollary 4.22, we have that

κiΘ = κiιiθi = 0.

Finally, to show that ιiΘ = 0 choose j, k ∈ {1, 2, 3} so that {i, j, k} = {1, 2, 3}.
By Proposition 4.19, we have that ιi = κjθk, and so

ιiΘ = κjθkΘ = θk(κjΘ) = 0

as we know from above that κjΘ = 0.

Corollary 4.24. For every i, j ∈ {1, 2, 3}, we have that

ιiιj = 0.
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Proof. We first show that ι2i = 0. Choose j, k ∈ {1, 2, 3} so that {i, j, k} =

{1, 2, 3}. By Proposition 4.19, we have that ιi = κjθk. Then, it follows that

ι2i = κ2
jθ

2
k = 0

as θ2
k = 0. Next, suppose that i, j ∈ {1, 2, 3} are such that i 6= j. Choose

k ∈ {1, 2, 3} so that {i, j, k} = {1, 2, 3}. By Proposition 4.19, we have that

ιi = κjθk and ιj = κiθk. Therefore, it follows that

ιiιj = κjθkκiθk = κjκiθ
2
k = 0

as θ2
k = 0.

Furthermore, by the result of Proposition 4.19 we can now understand the

non-zero homology classes appearing in tridegrees (−p,−q,−1), (−p,−1,−r) and

(−1,−q,−r) for p, q, r ≥ 1. Again since πC2
∗ (S−σ ∧HF2) = 0, we know that the

homology classes in these tridegrees are not products of the classes coming from

the three copies of the C2-equivariant calculation in πGFHF2.

Proposition 4.25. The non-zero homology classes in tridegrees (−1,−q,−r) for

q, r ≥ 1 are given by the products

κ1 ·
θ2

xi22 y
j2
2

· θ3

xi33 y
j3
3

for xi22 y
j2
2 a monomial in F2[x2, y2] and xi33 y

j3
3 a monomial in F2[x3, y3].

Proof. Fix some arbitrary q, r ≥ 1 and let xi22 y
j2
2 and xi33 y

j3
3 be monomials in

F2[x2, y2] and F2[x3, y3] respectively with i2 + j2 = −q and i3 + j3 = −r. By

Proposition 4.19, we know that κ1θ2θ3 = Θ. However, we also know that there

are non-zero classes θ2
x
i2
2 y

j2
2

and θ3
x
i3
3 y

j3
3

in homology such that

θ2

xi22 y
j2
2

· xi22 y
j2
2 = θ2 and

θ3

xi33 y
j3
3

· xi33 y
j3
3 = θ3.

Hence, it follows that κ1
θ2

x
i2
2 y

j2
2

θ3
x
i3
3 y

j3
3

is a non-zero class in homology at tride-

gree (−1,−q,−r) such that we get back the class Θ after multiplying by the

monomial xi22 y
j2
2 x

i3
3 y

j3
3 . Furthermore, notice that if x

i′2
2 y

j′2
2 and x

i′3
3 y

j′3
3 are mono-

mials in F2[x2, y2] and F2[x3, y3] with i′2 + j′2 = −q and i′3 + j′3 = −r such that

xi22 y
j2
2 x

i3
3 y

j3
3 6= x

i′2
2 y

j′2
2 x

i′3
3 y

j′3
3 , then

κ1
θ2

xi22 y
j2
2

θ3

xi33 y
j3
3

6= κ1
θ2

x
i′2
2 y

j′2
2

θ3

x
i′3
3 y

j′3
3

.
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Indeed, assume without loss of generality that i2 > i′2. Then, we see that

κ1
θ2

xi22 y
j2
2

θ3

xi33 y
j3
3

· xi22 = κ1
θ2

yj22

θ3

xi33 y
j3
3

is non-zero, but

κ1
θ2

x
i′2
2 y

j′2
2

θ3

x
i′3
3 y

j′3
3

· xi22 = 0.

By Theorem 4.4, we know that the Poincaré series for πG∗ (S−σ1−qσ2−rσ3 ∧HF2) is

given by
1

xq+r+1
(1 + x+ · · ·+ xq−1)(1 + x+ · · ·+ xr−1),

so the above products form the full tridegree (−1,−q,−r).

Remark 4.26. By the proof of Proposition 4.25, we can therefore think of the

class Θ as being infinitely divisible by xi and yi for each i ∈ {1, 2, 3} and we can

write

κ1
θ2

xi22 y
j2
2

θ3

xi33 y
j3
3

=
Θ

xi22 y
j2
2 x

i3
3 y

j3
3

,

which we will do in Section 4.6.

Although as mentioned earlier it is clear that no non-zero class in tridegrees

(−p,−q,−1), (−p,−1,−r) and (−1,−q,−r) for p, q, r ≥ 1 is a product of classes

from the three copies of the C2-equivariant result in πGFHF2, the same is in fact

true in the full negative cone.

Proposition 4.27. If xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3 is a monomial in F2[x1, y1, x2, y2, x3, y3],

then
θ1

xi11 y
j1
1

· θ2

xi22 y
j2
2

· θ3

xi33 y
j3
3

= 0.

Proof. We proceed by induction on j1. If j1 = 0, then we notice that

θ1

xi11

θ2

xi22 y
j2
2

θ3

xi33 y
j3
3

= (x1y2y3 + y1x2y3 + y1y2x3)
θ1

xi1+1
1

θ2

xi22 y
j2+1
2

θ3

xi33 y
j3+1
3

as y1
θ1

x
i1+1
1

= 0. However, the right-hand side is zero as we know from Theorem

4.14 that

x1y2y3 + y1x2y3 + y1y2x3 = 0.
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Similarly, given an arbitrary j1 > 0, we see that

(x1y2y3 + y1x2y3 + y1y2x3)
θ1

xi1+1
1 yj11

θ2

xi22 y
j2+1
2

θ3

xi33 y
j3+1
3

=
θ1

xi11 y
j1
1

θ2

xi22 y
j2
2

θ3

xi33 y
j3
3

+
θ1

xi1+1
1 yj1−1

1

θ2

xi2−1
2 yj2+1

2

θ3

xi33 y
j3
3

+
θ1

xi1+1
1 yj1−1

1

θ2

xi22 y
j2
2

θ3

xi3−1
3 yj3+1

3

=
θ1

xi11 y
j1
1

θ2

xi22 y
j2
2

θ3

xi33 y
j3
3

where the last equality follows by the induction hypothesis, so this product is

zero.

By degree reasons we know that Θxi = Θyi = 0 for all i ∈ {1, 2, 3} and

similarly ιixj = ιiyj = 0 for all i, j ∈ {1, 2, 3} with i 6= j. However, it is not true

that κixi = κiyi = 0 for all i ∈ {1, 2, 3}.

Proposition 4.28. For each {i, j, k} = {1, 2, 3}, we have that

κixi = xjyk + yjxk and κiyi = yjyk.

Proof. By symmetry, it suffices to compute the products κ1x1 and κ1y1. To do

this, recall from the proof of Proposition 4.19 that the homotopy Mackey functor

corresponding to κ1 is the constant Mackey functor F2. Similarly, we know from

Theorem 4.15 that the homotopy Mackey functor corresponding to y1 is also given

by F2. So, since κ1 lives in tridegree (−1, 1, 1) with topological degree 1 and y1

lives in tridegree (1, 0, 0) with topological degree 1, we can identify ResGH2
(κ1)

with 1 ∈ F2[x, y] and ResGH2
(y1) with y ∈ F2[x, y], and so

ResGH2
(κ1y1) = ResGH2

(κ1)ResGH2
(y1) = y 6= 0,

which implies that κ1y1 6= 0. Since the product κ1y1 lives in tridegree (0, 1, 1)

with topological degree 2, it follows from the ring structure of the positive cone

given by Theorem 4.14 that

κ1y1 = y2y3.

Similarly, we know from Theorem 4.15 that ResGH2
(x1) is non-zero, so we can

identify ResGH2
(x1) with x ∈ F2[x, y], and thus

ResGH2
(κ1x1) = ResGH2

(κ1)ResGH2
(x1) = x 6= 0,

which implies that κ1x1 6= 0. However, the product κ1x1 lives in tridegree (0, 1, 1)

with topological degree 1, so in this case we just know that it is some non-zero
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element in the copy of F2
2 generated by x2y3 and y2x3. But since κ1y1 = y2y3 we

have in particular that

κ1x1y1 = x1y2y3,

and hence using the relation x1y2y3 + y1x2y3 + y1y2x3 = 0 it follows that

κ1x1y1 = y1(x2y3 + y2x3).

Therefore, we must have that

κ1x1 = x2y3 + y2x3

as otherwise we would have that κ1x1y1 = y1x2y3 or κ1x1y1 = y1y2x3, but neither

of these are equal to y1(x2y3 + y2x3) by Theorem 4.14.

By similar arguments to the proof of Proposition 4.28 using that the restriction

maps are ring maps and that the homotopy Mackey functors corresponding to

each κi is the constant Mackey functor F2, we have that κ2
i is non-zero and

κiκj = y2
k for each {i, j, k} = {1, 2, 3}. Note that we cannot express κ2

1, κ2
2 and

κ2
3 in terms of the xi, yi and θi classes. Indeed, if this were the case then since κ2

1

lives in tridegree (−2, 2, 2) it would have to contain a factor of θ1, but θ1x1 = 0

whereas κ2
1x1 = κ1x2y3 + κ1y2x3 is non-zero. An alternative expression for κ2

1 is

given in Section 4.6.

Corollary 4.29. Given any monomial m in F2[x1, y1, x2, y2, x3, y3], there is a

non-zero class ηm in the negative cone such that ηm ·m = Θ.

Proof. Fix a monomial xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3 in F2[x1, y1, x2, y2, x3, y3], and consider

the product

κi1+j1+1
1

θ2

xi1+i2
2 yj1+j2

2

θ3

xi33 y
i1+j1+j3
3

.

If we first multiply this product by xi22 y
j2
2 x

i3
3 y

j3
3 , then we are left with

κi1+j1+1
1

θ2

xi12 y
j1
2

θ3

yi1+j1
3

.

By inductively using that κ1x1 = x2y3 + y2x3 and κ1y1 = y2y3 from Proposition

4.28, if we multiply the above by xi11 y
j1
1 we get κ1θ2θ3 which is equal to Θ by

Proposition 4.19.
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Note that if η is a class in the negative cone such that η · x1y2y3m = Θ for

some monomial m in F2[x1, y1, x2, y2, x3, y3], then by the relation x1y2y3+y1x2y3+

y1y2x3 = 0 in the positive cone it follows that

η · y1x2y3m+ η · y1y2x3m = Θ

and hence we must also have that either η · y1x2y3m = Θ or η · y1y2x3m = Θ, but

not both. This discussion is of course symmetric if we instead first assume that

η · y1x2y3m = Θ or η · y1y2x3m = Θ. For example, if we multiply the product

κ2
1

θ2

x2y2

θ3

y2
3

by either x1y2y3 or y1x2y3 then we get back Θ, though we get zero when we

multiply by y1y2x3. The homology in the negative cone (and indeed in the mixed

cones) will be discussed more explicitly in Section 4.6.

4.6 An algebraic description of the homology

In this section we will give a complete algebraic description of the homology

πGFHF2. In particular, we explain how the homology in the positive, negative

and mixed cones can be expressed entirely in terms of the classes xi, yi, θi, κi, ιi

and Θ for i ∈ {1, 2, 3}, involving the polynomial

f = x1y2y3 + y1x2y3 + y1y2x3

seen earlier in this chapter. Note that by Proposition 4.19, we can then express

the homology entirely in terms of the xi, yi, θi and κi classes for i ∈ {1, 2, 3},
but for ease of notation (and the fact that for example ι1 = κ2θ3 = κ3θ2), we will

continue using the notation ιi and Θ. First, recall from the proof of Theorem

4.14 that we have a direct sum decomposition of the trigraded triple complex

computing the homology in the positive cone given by

F2[x1, y1, x2, y2, x3, y3]{Ξ} ⊕ F2[x1, y1, x2, y2, x3, y3]{1},

where Ξ lives in tridegree (1, 1, 1) and topological degree 3, and the differential d

takes the first summand to the second summand. In particular, we saw that

d(Ξ) = (x1y2y3 + y1x2y3 + y1y2x3) · 1,

and the homology in the positive cone is given by the homology of the chain

complex

F2[x1, y1, x2, y2, x3, y3]{Ξ} f−→ F2[x1, y1, x2, y2, x3, y3]{1}
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concentrated in two degrees, where f is the polynomial as above. This map is

injective but not surjective, so the homology in the positive cone is given by the

cokernel of this map, namely the quotient ring

F2[x1, y1, x2, y2, x3, y3]

(x1y2y3 + y1x2y3 + y1y2x3)
.

Now, we claim that similar analysis can be done for the negative cone and the

six mixed cones, and we begin by looking at the negative cone. As in Section 4.5,

let Θ denote the unique non-zero homology class at tridegree (−1,−1,−1) and

topological degree −3. We will be considering the F2-module

F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 , x

∞
2 , y

∞
2 , x

∞
3 , y

∞
3 )
{Θ}.

The notation here is similar to that used in Chapter 3, and this set is the F2-linear

span of elements of the form

Θ

xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3

where xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3 is a monomial in F2[x1, y1, x2, y2, x3, y3]. Note that each

of these elements do not necessarily represent homology classes, rather they will

be used to label elements in the trigraded triple complex computing the homology

in the negative cone. However, various sums of these elements will be homology

classes as discussed in Remark 4.26. We will also consider the F2-module

F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 , x

∞
2 , y

∞
2 , x

∞
3 , y

∞
3 )
{θ1θ2θ3}

where the homology classes θ1, θ2 and θ3 are defined as in Section 4.5, and this

set is the F2-linear span of elements of the form

θ1θ2θ3

xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3

which are indeed all homology classes, namely the product of the homology classes

θ1

xi11 y
j1
1

· θ2

xi22 y
j2
2

· θ3

xi33 y
j3
3

.

In order to make sense of the following theorem, we will use how products of this

form behave in homology when multiplied by monomials in F2[x1, y1, x2, y2, x3, y3],

for example that we get zero when the monomial does not divide xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3 .
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Theorem 4.30. The homology in the negative cone is given by the homology of

the chain complex

F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 , x

∞
2 , y

∞
2 , x

∞
3 , y

∞
3 )
{Θ} f−→ F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 , x

∞
2 , y

∞
2 , x

∞
3 , y

∞
3 )
{θ1θ2θ3}

concentrated in two degrees, given by multiplication by the polynomial f = x1y2y3+

y1x2y3 + y1y2x3. More precisely, this map is given by

Θ

xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3

7→ f · θ1θ2θ3

xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3

.

Proof. We first consider a direct sum decomposition D⊕X of the trigraded triple

complex computing the homology in the negative cone defined as follows. The

elements forming the direct summand D are the domain and image of any of

the three differentials d1, d2 and d3 whose domain is a single copy of F2. In the

following diagram, the direct summand D is the domain and image of all the red

differentials.

•
��

// •
}}

•
}}

• // •• //
OO ••OO

•
��

//
OO •

}}
OO •

}}
OO

• //
OO ••OO // ••OO
•

��

// •
}}

•
}}• // • •

Letting d = d1 + d2 + d3 as usual be the total differential in our trigraded triple

complex, we have that the homology in the negative cone is given by the homology

of the chain complex

D ⊕X d−→ D ⊕X.

Since the differential d maps D onto itself and maps X to both D and X, we can

write the differential d as the matrix[
dD dXD
0 dX

]

with respect to the direct sum decomposition D ⊕X. Now, notice that we have
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the short exact sequence of chain complexes (each concentrated in two degrees)

0 //

��

D

[
1

0

]
//

dD

��

D ⊕X
[0 1] //

[
dD dXD
0 dX

]
��

X //

dX

��

0

��
0 // D

[
1

0

]
// D ⊕X

[0 1] // X // 0,

so we get a long exact sequence in homology. However, by iteratively using the

spectral sequence of a double complex at each tridegree, we see that the homology

of the chain complex D
dD−→ D is zero. Therefore, it follows that the homology in

the negative cone is isomorphic to the homology of the chain complex

X
dX−→ X.

That is, in the triple complex at each tridegree in the negative cone we can ignore

all elements contained in the direct summand D, so we only consider the trigraded

triple complex X. Now, we break X into a direct sum

X = S1 ⊕ S2

as we did in the proof of Theorem 4.14. At each fixed tridegree in X, the (non-

zero) F2-modules in each position of the corresponding triple complex are copies

of either F2 or F2
2. The copies of F2 at each tridegree in X as well as the copies

of F2 contained in each F2
2 generated by the elements (1, 0) ∈ F2

2 corresponding

to the sum

z000 + z101 + z011 + z110

form the direct summand S1. The copies of F2 contained in each F2
2 generated

by the diagonal elements (1, 1) ∈ F2
2 corresponding to the sum

(z000 + z101 + z011 + z110) + (z111 + z010 + z100 + z001)

form the direct summand S2. Now, by degree reasons each element in S1 can be

labelled with a unique element in

F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 , x

∞
2 , y

∞
2 , x

∞
3 , y

∞
3 )
{Θ}

and every element in S2 is a unique homology class in

F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 , x

∞
2 , y

∞
2 , x

∞
3 , y

∞
3 )
{θ1θ2θ3}.
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For example, the following diagram shows the trigraded triple complex X =

S1 ⊕ S2 at tridegree (−3,−2,−2).

Θ

x2
1x2y3•

Θ
x1y1x2y3•

~~

Θ

y2
1x2y3•

��
Θ

x2
1y2y3• //

Θ
x1y1y2y3••
θ1θ2θ3
x1OO

//

Θ

y2
1y2y3••
θ1θ2θ3
y1OO

Θ

x2
1x2x3•

Θ
x1y1x2x3•

Θ

y2
1x2x3•

Θ

x2
1y2x3•

Θ
x1y1y2x3•

Θ

y2
1y2x3•

As in the proof of Theorem 4.14 we have that the total differential d in the

trigraded triple complex X takes the summand S1 to the summand S2. In

particular, we see that the total differential is given by multiplication by f =

x1y2y3 + y1x2y3 + y1y2x3 with respect to our labelling of elements in S1 and S2.

Indeed, given i1, j1, i2, j2, i3, j3 ≥ 0 we see that

d

(
Θ

xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3

)
=

θ1θ2θ3

xi1−1
1 yj11 x

i2
2 y

j2−1
2 xi33 y

j3−1
3

+
θ1θ2θ3

xi11 y
j1−1
1 xi2−1

2 yj22 x
i3
3 y

j3−1
3

+
θ1θ2θ3

xi11 y
j1−1
1 xi22 y

j2−1
2 xi3−1

3 yj33

,

where we interpret any of these terms with a negative power of xi or yi in the de-

nominator as zero. Using how homology classes in S2 behave under multiplication

by elements in F2[x1, y1, x2, y2, x3, y3] we see that the above is equal to

f · θ1θ2θ3

xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3

,

so we are done since the homology in the negative cone is given by the homology

of the chain complex

S1
d−→ S2.

Notice in particular that the map in the statement of Theorem 4.30 is sur-

jective, which can be seen for example by Proposition 4.27. Furthermore, as

discussed in Section 4.5 we can indeed view elements in the kernel of this map as



4.6. AN ALGEBRAIC DESCRIPTION OF THE HOMOLOGY 81

classes in the negative cone such that we get back the class Θ after multiplying by

a monomial in F2[x1, y1, x2, y2, x3, y3]. For example, we can think of the element

Θ

x1y2y3

+
Θ

y1x2y3

in the kernel as a homology class such that we get back the class Θ after mul-

tiplying by x1y2y3 or y1x2y3, and hence zero after multiplying by y1y2x3 as

x1y2y3 + y1x2y3 + y1y2x3 = 0 in homology. That is, we can identify it with

the product

κ2
1

θ2

x2y2

θ3

y2
3

using Proposition 4.28. We now look at the six mixed cones, and the arguments

in these cases will be similar to Theorem 4.30. We first consider the mixed cones

of Type I. For each i ∈ {1, 2, 3}, consider the homology class κi defined in Section

4.5. If i = 1, we will be looking now at the F2-module

F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 )

{κ1}

spanned by elements of the form

κ1

xi11 y
j1
1

xi22 y
j2
2 x

i3
3 y

j3
3

with xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3 a monomial in F2[x1, y1, x2, y2, x3, y3]. As before, not all

elements in this F2-module will represent homology classes, but every element in

the F2-module
F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 )

{θ1}

is indeed a homology class, however not every element will represent a non-zero

homology class.

Theorem 4.31. The homology in the mixed cone of Type I corresponding to

tridegrees (−p, q, r) with p ≥ 1 and q, r ≥ 0 is given by the homology of the chain

complex

F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 )

{κ1}
f−→ F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 )

{θ1}

concentrated in two degrees, given by multiplication by the polynomial f = x1y2y3+

y1x2y3 + y1y2x3. More precisely, the map is given by

κ1

xi11 y
j1
1

xi22 y
j2
2 x

i3
3 y

j3
3 7→ f · θ1

xi11 y
j1
1

xi22 y
j2
2 x

i3
3 y

j3
3 ,

and similarly for the other two mixed cones of Type I.
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Proof. As in the statement of the theorem, we will look at the mixed cone corre-

sponding to tridegrees (−p, q, r) with p ≥ 1 and q, r ≥ 0. Similar to the proof of

Theorem 4.30, we begin by breaking up the trigraded triple complex computing

the homology in this mixed cone into E⊕Y where the elements of the summand

E are the domain and image of the red differentials in the following diagram.

• // •== •==
• // •• //

��

••

��
• // •== •==

• // ••

��

// ••

��
• // • •

• // • •

That is, the elements of E are the domain and image of a horizontal d1 differential

whose source is a copy of F2. The homology in this mixed cone is given by the

homology of the chain complex

E ⊕ Y d−→ E ⊕ Y,

and we can again express the total differential d in terms of this direct sum

decomposition as the matrix [
dE dYE
0 dY

]
.

By a similar argument to that given in the proof of Theorem 4.30 in constructing

a short exact sequence of chain complexes, we have that the homology in this

mixed cone is isomorphic to the homology of the chain complex

Y
dY−→ Y.

We now break up Y into a direct sum

Y = T1 ⊕ T2

as follows. Note that in each tridegree in Y , the non-zero F2-modules making

up the corresponding triple complex are copies of either F2 or F2
2. However, the

copies of F2 were either single copies of F2 in E ⊕ Y or copies of F2 contained in

an F2
2 in E ⊕ Y generated by (1, 0) ∈ F2

2. The elements of T1 at each tridegree

are precisely the copies of F2 generated by the elements (1, 0) in each copy of F2
2

in Y and the single copies of F2 in Y that were contained in an F2
2 in E⊕Y . The
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elements of T2 at each tridegree are precisely the copies of F2 that were single

copies of F2 in E⊕Y as well as the copies of F2 generated by the diagonal element

(1, 1) in an F2
2 in Y . As in the proof of Theorem 4.30 we can by degree reasons

label each element in T1 by a unique element in

F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 )

{κ1}

and each element in T2 is a unique homology class in

F2[x1, y1, x2, y2, x3, y3]

(x∞1 , y
∞
1 )

{θ1},

and furthermore any element in either of these F2-modules gives us an element in

T1 or T2. The following diagram shows the trigraded triple complex Y = T1 ⊕ T2

at tridegree (−3, 1, 1).

θ1
x1
x2y3

•@@
θ1
y1
x2y3

•@@

•
κ1
x2
1

//
θ1
x1
y2y3

••
κ1
x1y1

��

//
θ1
y1
y2y3

••
κ1
y2
1

��

θ1
x1
x2x3

•
θ1
y1
x2x3

•

θ1
x1
y2x3

•
θ1
y1
y2x3

•

As in the proof of Theorem 4.30, we see that the total differential d in the trigraded

triple complex Y is given by multiplication by f .

Notice that each of the three maps in the statement of Theorem 4.31 are

neither injective nor surjective, i.e. they each have non-zero kernel and cokernel,

unlike in the positive and negative cones. For example, looking at the mixed cone

corresponding to tridegrees (−p, q, r) where p ≥ 1 and q, r ≥ 0, we see that all

elements of the form κ1x
i2
2 y

j2
2 x

i3
3 y

j3
3 are in the kernel of multiplication by f and

therefore represent non-zero homology classes. This agrees with our perspective

from Section 4.5 of the ring structure of the negative and mixed cones, where

the product κ1x
i2
2 y

j2
2 x

i3
3 y

j3
3 of homology classes is non-zero as κ1θ2θ3 = Θ (by

Proposition 4.19) implies in particular that

κ1x
i2
2 y

j2
2 x

i3
3 y

j3
3

θ2

xi22 y
j2
2

θ3

xi33 y
j3
3

= Θ.
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Furthermore, notice that the only element in the kernel of multiplication by f in

the first map in the statement of Theorem 4.31 at tridegree (−2, 2, 2) is the sum

κ1

x1

x2y3 +
κ1

x1

y2x3 +
κ1

y1

y2y3,

which we can therefore identify with the homology class κ2
1 from the ring structure

perspective of Section 4.5, recalling that indeed κ2
1x1 = κ1x2y3 + κ1y2x3 and

κ2
1y1 = κ1y2y3 by Proposition 4.28. Looking at the cokernel of the first map in

the statement of Theorem 4.31, we see for example at tridegree (−3, 1, 1) that
θ1
y1
y2y3 is non-zero (i.e. is not in the image of multiplication by f) and that

θ1

y1

y2y3 =
θ1

x1

x2y3 +
θ1

x1

y2x3,

which follows since

d

(
κ1

x1y1

)
= (x1y2y3 + y1x2y3 + y1y2x3) · θ1

x1y1

=
θ1

y1

y2y3 +
θ1

x1

x2y3 +
θ1

x1

y2x3.

From the perspective of Section 4.5, we can identify this homology class with

κ1θ1. Indeed, using Proposition 4.28 we have that

κ1θ1 = κ1x1
θ1

x1

=
θ1

x1

x2y3 +
θ1

x1

y2x3,

or alternatively

κ1θ1 = κ1y1
θ1

y1

=
θ1

y1

y2y3.

Finally, we look at the three mixed cones of Type II. For each i ∈ {1, 2, 3},
consider the homology class ιi as defined in Section 4.5. If we take i = 1, then

we will now be looking at the F2-module

F2[x1, y1, x2, y2, x3, y3]

(x∞2 , y
∞
2 , x

∞
3 , y

∞
3 )

{ι1}

spanned by elements of the form

xi11 y
j1
1

ι1

xi22 y
j2
2 x

i3
3 y

j3
3

where xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3 is a monomial in F2[x1, y1, x2, y2, x3, y3]. Again, not every

element of this set will represent a homology class, unlike elements of the F2-

module
F2[x1, y1, x2, y2, x3, y3]

(x∞2 , y
∞
2 , x

∞
3 , y

∞
3 )

{θ2θ3}

that we will also be considering.
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Theorem 4.32. The homology in the mixed cone of Type II corresponding to

tridegrees (p,−q,−r) with p ≥ 0 and q, r ≥ 1 is given by the homology of the

chain complex

F2[x1, y1, x2, y2, x3, y3]

(x∞2 , y
∞
2 , x

∞
3 , y

∞
3 )

{ι1}
f−→ F2[x1, y1, x2, y2, x3, y3]

(x∞2 , y
∞
2 , x

∞
3 , y

∞
3 )

{θ2θ3}

concentrated in two degrees, given by multiplication by the polynomial f = x1y2y3+

y1x2y3 + y1y2x3. More precisely, the map is given by

xi11 y
j1
1

ι1

xi22 y
j2
2 x

i3
3 y

j3
3

7→ f · xi11 y
j1
1

θ2θ3

xi22 y
j2
2 x

i3
3 y

j3
3

,

and similarly for the other two mixed cones of Type II.

Proof. By symmetry, it suffices as in the statement of the theorem to just consider

tridegrees (p,−q,−r) where p ≥ 0 and q, r ≥ 1. As usual, we first break the

trigraded triple complex computing the homology in this mixed cone into a direct

sum F ⊕ Z where elements in F are the domain and image of any d2 or d3

differential whose source is a copy of F2, i.e. the domain and image of the red

differentials in the following diagram.

•
��

•
}}

•
}}

• oo •• ooOO ••OO
•

��
OO •

}}
OO •

}}
OO

• ooOO ••OO oo ••OO
•

��
•

}}
•

}}• • •

The homology in this mixed cone is given by the homology of the chain complex

F ⊕ Z d−→ F ⊕ Z

where d denotes the total differential, which we can write with respect to this

direct sum decomposition as the matrix[
dF dZF
0 dZ

]
.

Again, by a similar argument as in the proof of Theorem 4.30, we see that the

homology in this mixed cone is isomorphic to the homology of the chain complex

Z
dZ−→ Z.
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We then break up the trigraded triple complex Z into a direct sum Z = U1⊕U2,

where the elements of U1 and U2 are defined in the same way that the elements

of T1 and T2 respectively were defined in the proof of Theorem 4.31. By degree

reasons, we can identify U1 and U2 with

F2[x1, y1, x2, y2, x3, y3]

(x∞2 , y
∞
2 , x

∞
3 , y

∞
3 )

{ι1} and
F2[x1, y1, x2, y2, x3, y3]

(x∞2 , y
∞
2 , x

∞
3 , y

∞
3 )

{θ2θ3}

respectively. The following diagram shows the triple complex at tridegree (2,−2,−2)

in Z = U1 ⊕ U2.

x1
ι1
x2y3•

}}

y1
ι1
x2y3•

��

•
x2

1θ2θ3

oo
x1

ι1
y2y3••

x1y1θ2θ3OO

oo
y1

ι1
y2y3••

y2
1θ2θ3OO

x1
ι1
x2x3•

y1
ι1
x2x3•

x1
ι1
y2x3•

y1
ι1
y2x3•

Again by a similar argument to the proof of Theorem 4.30 we see that the total

differential d in the trigraded triple complex Z is given by multiplication by f .

4.7 The complete Mackey functor structure

From the perspective of the algebraic description of the top level πGFHF2 given

in Section 4.6, we will now compute the complete Mackey functor structure of

πFHF2. As discussed in Section 4.2, we already know the middle and bottom

levels (and the transfer and restriction maps between them) of the homotopy

Mackey functors, so it suffices to compute the transfer and restriction maps TrGHi
and ResGHi for each i ∈ {1, 2, 3}. In fact, by symmetry it suffices to compute the

transfer and restriction maps TrGH3
and ResGH3

. First, we consider πH3
∗ (Spσ1+qσ2 ∧

HF2) for p, q ∈ Z. We know that this is isomorphic to πC2
∗ (S(p+q)σ ∧ HF2), but

we will focus on the RO(G)-grading. If p, q ≥ 0, then as seen in Section 4.2 this
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homology at the G/H3 level is given by the homology of the double complex

x2
1x

2
2•

x1y1x2
2•

y2
1x

2
2•

x2
1x2y2•

x1y1x2y2••
x1x2ξ3

oo

OO

y2
2x2y2••
y1x2ξ3

oo

OO

x2
1y

2
2•

x1y1y2
2••

x1y2ξ3

oo

OO

y2
1y

2
2••

y1y2ξ3

oo

OO

where the above diagram shows bidegree (2, 2), and as usual each • represents

a copy of F2 and each •• represents a copy of F2
2. Furthermore, the non-zero

maps are all codiagonal maps ∇ or
[
∇
∇

]
. Hence, by an analogous direct sum

decomposition argument as we have done when analysing the top level πGFHF2 in

Section 4.6, we have that the homology πH3
∗ (Spσ1+qσ2 ∧HF2) for p, q ≥ 0 is given

by the bidegree (p, q) part of the homology of the chain complex

F2[x1, y1, x2, y2]{ξ3}
f3−→ F2[x1, y1, x2, y2]{1},

where f3 = x1y2 + y1x2 and ξ3 is the element (1, 0) ∈ F2
2 at bidegree (1, 1).

Note that a monomial xi11 y
j1
1 x

i2
2 y

j2
2 in the polynomial ring F2[x1, y1, x2, y2]{1} at

the G/H3 level represents the restriction ResGH3
(xi11 y

j1
1 x

i2
2 y

j2
2 ) as discussed in the

proof of Theorem 4.15, recalling that the restriction map ResGH3
is a ring map.

Similarly, if we look at the homology πH3
∗ (S−pσ1−qσ2∧HF2) where p, q ≥ 1 then we

are computing the homology of the double complex (looking at bidegree (−2,−2))

• //

��

• •

• ••//
��

••//
��

• ••//
��

••//
��

where each non-zero map is either the identity map, or the diagonal maps ∆ or[
∆ ∆

]
. By a similar argument to the proof of Theorem 4.30, the homology of

the above double complex is isomorphic to the homology of the double complex

t3
x1x2•

t3
y1x2•

t3
x1y2•

t3
y1y2••
θ1θ2

//

��
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Notice that the diagonal element (1, 1) ∈ F2
2 at topological degree −4 in the above

diagram of bidegree (−2,−2) is precisely ResGH3
(θ1θ2) = ResGH3

(θ1)ResGH3
(θ2) which

we identify with θ1θ2 (i.e. we identify ResGH3
(θ1) with θ1 and ResGH3

(θ2) with θ2).

If we let t3 denote the unique non-zero class at bidegree (−1,−1) then the homol-

ogy πH3
∗ (S−pσ1−qσ2 ∧HF2) is given by the bidegree (−p,−q) part of the homology

of the chain complex

F2[x1, y1, x2, y2]

(x∞1 , y
∞
1 , x

∞
2 , y

∞
2 )
{t3}

f3−→ F2[x1, y1, x2, y2]

(x∞1 , y
∞
1 , x

∞
2 , y

∞
2 )
{θ1θ2},

where again f3 = x1y2 +y1x2. Similarly, if we look at πH3
∗ (S−pσ1+qσ2∧HF2) where

p ≥ 1 and q ≥ 0, then we are computing the homology of the double complex

(looking at bidegree (−2, 2))

• // • •

• ••//
OO

••//
OO

• ••//
OO

••//
OO

which is isomorphic to the homology of the double complex

θ1x2
2•

k1
3
x1
x2

•
k1
3
y1
x2

••
θ1x2y2

//

OO

k1
3
x1
y2

•
k1
3
y1
y2

••
θ1y2

2

//

OO

similar to the proof of Theorem 4.31. If we let k1
3 denote the unique non-zero

class at bidegree (−1, 1), then identifying ResGH3
(θ1) with θ1 as mentioned above,

we see that the homology πH3
∗ (S−pσ1+qσ2 ∧HF2) is given by the bidegree (−p, q)

part of the homology of the chain complex

F2[x1, y1, x2, y2]

(x∞1 , y
∞
1 )

{k1
3}

f3−→ F2[x1, y1, x2, y2]

(x∞1 , y
∞
1 )

{θ1}.

By symmetry, we have that πH3
∗ (Spσ1−qσ2 ∧HF2) for p ≥ 0 and q ≥ 1 is given by

the bidegree (p,−q) part of the homology of the chain complex

F2[x1, y1, x2, y2]

(x∞2 , y
∞
2 )

{k2
3}

f3−→ F2[x1, y1, x2, y2]

(x∞2 , y
∞
2 )

{θ2}
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where k2
3 denotes the unique non-zero class at bidegree (1,−1). Now, recall that

πH3
k (Spσ1+qσ2+rσ3 ∧HF2) ∼= πH3

k (Spσ1+qσ2+r ∧HF2)

∼= πH3
k−r(S

pσ1+qσ2 ∧HF2)

for all p, q, r ∈ Z, i.e. if we introduce non-zero multiples of σ3 then we are just

shifting our homology groups to higher or lower degrees via r trivial suspensions,

and we use y3 to keep track of the number of trivial suspensions. That is, if we are

looking at πH3
∗ (Spσ1+qσ2+r ∧HF2) then we introduce yr3 to our above expressions

for elements of the double complex computing πH3
∗ (Spσ1+qσ2 ∧HF2).

However, we want to compute the transfer and restriction maps TrGH3
and

ResGH3
in πFHF2, and therefore as discussed in Section 4.2 we need to look at the

H3-CW structure on Spσ1+qσ2+rσ3 (for p, q, r ≥ 0) giving a triple complex that

computes πH3
∗ (Spσ1+qσ2+rσ3 ∧ HF2) where this H3-CW structure on Srσ3 ' Sr

has two cells in each dimension up to r. This problem can be resolved by giving

an explicit chain homotopy equivalence between the triple complex computing

πH3
∗ (Spσ1+qσ2+rσ3 ∧HF2) and the shifted copy of the double complex computing

πH3
∗ (Spσ1+qσ2 ∧HF2). We first look at the positive cone, and although we already

know the Mackey functor structure by Theorem 4.15 the perspective of the fol-

lowing theorem is generalisable for computing the Mackey functor structure in

the negative and mixed cones.

Theorem 4.33. The transfer and restriction maps TrGH3
and ResGH3

between the

G/H3 and G/G levels of the positive cone in πFHF2 are induced by the maps TGH3

and RG
H3

defined as follows between the two chain complexes

F2[x1, y1, x2, y2, x3, y3]{Ξ} f−→

RGH3
��

F2[x1, y1, x2, y2, x3, y3]{1}

F2[x1, y1, x2, y2, y3]{ξ3}
f3−→

TGH3

TT

F2[x1, y1, x2, y2, y3]{1}

each concentrated in two degrees whose homology computes the G/H3 and G/G

levels of the positive cone. On the generators, we have that

1. TGH3
(1) = 0

2. TGH3
(ξ3) = y1y2 · 1

3. RG
H3

(1) = 1

4. RG
H3

(Ξ) = y3 · ξ3.
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The maps TGH3
and RG

H3
are extended linearly to the whole F2-modules, where

RG
H3

applied to any element with a factor of x3 is zero.

Remark 4.34. In the statement of Theorem 4.33, we see that RG
H3

(TGH3
(ξ3)) =

y1y2. This agrees with Proposition 2.15 as the non-trivial element of the Weyl

group WH3(G) sends ξ3 to y1y2. Furthermore, notice that TGH3
(RG

H3
(Ξ)) = y1y2y3,

and this does not contradict Proposition 2.23 since in tridegrees (p, q, r) with

r ≥ 1 the maps TGH3
and RG

H3
are defined as composites of the transfer and

restriction maps with non-identity chain homotopy equivalences.

Proof. At each tridegree (p, q, r) where p, q ≥ 0 and r ≥ 1 we give explicit

chain homotopy equivalences Ψ and Φ between the triple complex computing

πH3
∗ (Spσ1+qσ2+rσ3 ∧ HF2) coming from the product G-CW structure on Spσ1 ∧
Sqσ2∧Srσ3 and the shift by r trivial suspensions of the double complex computing

πH3
∗ (Spσ1+qσ2 ∧HF2) as follows.

• •<< •<<
• oo •• oo

��

••

��
• •<< •<<

• oo ••

��

oo ••

��
• • •

• • •

ResGH3

::

TrGH3

||

••

��

••99

��

••99

��
•• oo

��

•••• oo

��

••••

��
••

��

••99

��

••99

��
•• oo

��

••••

��

oo ••••

��
• •99 •99

• ••oo ••oo

Ψ

::
Φ
|| • • •

• ••oo

OO

••oo

OO

The chain map Φ can be thought of as a diagonal map into the rth level (along

the σ3-direction) of the triple complex computing πH3
∗ (Spσ1+qσ2+rσ3 ∧HF2), and

the chain map Ψ can be thought of as projection onto half of each F2-vector

space on the rth level of the triple complex and zero on the other levels along the

σ3-direction. More precisely, the chain map Φ on a copy of F2 is given by the

diagonal map ∆ and on a copy of F2
2 is given by the matrix

A =


1 0

0 1

1 0

0 1


using the notation from Section 4.2. The image of the chain map Φ is precisely

what is left over when we take homology in the σ3-direction in the triple complex

at the H3-level, so we see that the chain map Φ induces an isomorphism in ho-

mology. Since Φ is a chain map between chain complexes of vector spaces over
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the field F2 that induces an isomorphism in homology, we know by [18, Theorem

10.4.8] that Φ is a chain homotopy equivalence. Letting TGH3
= TrGH3

◦Φ and noting

that the transfer maps TrGH3
were computed explicitly in Section 4.2 (for example

as the matrix BT on a copy of F4
2), we therefore see that TGH3

(m · ξ3) = m · y1y2

and TGH3
(m · 1) = 0 for any monomial m in F2[x1, y1, x2, y2, y3].

The chain map Ψ on a copy of F2
2 in the rth level in the σ3-direction is projec-

tion onto the first component, i.e. is given by the matrix
[
1 0

]
, and on a copy

of F4
2 in the rth level is given by projection onto the copy of F2

2 generated by the

vectors (1, 0, 0, 0) and (0, 0, 0, 1), i.e. is given by the matrix[
1 0 0 0

0 0 0 1

]
.

We see that Ψ induces an isomorphism in homology, so by the same argument

as above we may deduce that it is a chain homotopy equivalence. Letting RG
H3

=

Ψ ◦ ResGH3
and using for example that the restriction map ResGH3

on a copy of F2
2

is given by the matrix B, we see that RG
H3

(m ·Ξ) = m ·y3ξ3 and RG
H3

(m ·1) = m ·1
for any monomial m in F2[x1, y1, x2, y2, x3, y3] such that x3 does not divide m and

is zero otherwise.

The argument for the transfer and restriction maps in the negative cone is

similar, though our chain homotopy equivalences are defined differently, as one

would expect.

Theorem 4.35. The transfer and restriction maps TrGH3
and ResGH3

between the

G/H3 and G/G levels of the negative cone in πFHF2 are induced by the maps

TGH3
and RG

H3
defined as follows between the two chain complexes

F2[x1,y1,x2,y2,x3,y3]
(x∞1 ,y∞1 ,x∞2 ,y∞2 ,x∞3 ,y∞3 )

{Θ} f−→

RGH3

��

F2[x1,y1,x2,y2,x3,y3]
(x∞1 ,y∞1 ,x∞2 ,y∞2 ,x∞3 ,y∞3 )

{θ1θ2θ3}

F2[x1,y1,x2,y2,y3]
(x∞1 ,y∞1 ,x∞2 ,y∞2 ,y∞3 )

{
t3
y3

}
f3−→

TGH3

TT

F2[x1,y1,x2,y2,y3]
(x∞1 ,y∞1 ,x∞2 ,y∞2 ,y∞3 )

{
θ1θ2
y3

}
each concentrated in two degrees whose homology computes the G/H3 and G/G

levels of the negative cone. On the generators, we have that

1. TGH3

(
θ1θ2
y3

)
= y3 · θ1θ2θ3

2. TGH3

(
t3
y3

)
= Θ

3. RG
H3

(θ1θ2θ3) = 0

4. RG
H3

(Θ) = y1y2 · θ1θ2y3
.
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The maps TGH3
and RG

H3
are extended in the natural way to the whole F2-

modules, where RG
H3

applied to any element involving x3 is zero.

Proof. At each tridegree (−p,−q,−r) where p, q, r ≥ 1 we again give explicit

chain homotopy equivalences Ψ and Φ between the triple complex computing

πH3
∗ (S−pσ1−qσ2−rσ3 ∧HF2) and the downwards shift by r-many trivial suspensions

of the double complex computing πH3
∗ (S−pσ1−qσ2 ∧HF2).

•
~~

// •
||

•
||

• // •• //
OO ••OO

•
~~

//
OO •

|| OO
•

|| OO
• //
OO ••OO // ••OO
•
~~

// •
||

•
||• // • •

ResGH3

::

TrGH3

||

••
||

//
OO ••

yy
OO ••

yy
OO

•• //
OO •••• //

OO ••••OO
••
||

//
OO ••

yy
OO ••

yy
OO

•• //
OO ••••OO // ••••OO
•

||
// •

yy
•

yy
• // •• // ••

Ψ

::
Φ
|| • // • •

•
��
••//
��
••//
��

In this case we can think of the chain map Φ as inclusion into half of each

F2-vector space on the −r level (along the σ3-direction) of the triple complex

computing πH3
∗ (S−pσ1−qσ2−rσ3 ∧HF2), and the chain map Ψ can be thought of as

a codiagonal map on the −r level of the triple complex and zero on the other

levels along the σ3-direction. More precisely, the chain map Φ on a copy of F2

is given by multiplication by the matrix
[

1

0

]
and on a copy of F2

2 is given by

multiplication by the matrix 
1 0

0 0

0 0

0 1

 .
The image of Φ is precisely what is left over when we take homology in the

σ3-direction in the triple complex, so we see that the chain map Φ induces an

isomorphism in homology which implies as in the proof of Theorem 4.33 that Φ

is a chain homotopy equivalence. The chain map Ψ is given on a copy of F2
2 in

the −r level of the triple complex by the codiagonal map ∇ and on a copy of F4
2

in the −r level by multiplication by the matrix

AT =

[
1 0 1 0

0 1 0 1

]
,

which also induces an isomorphism in homology and is therefore a chain homotopy

equivalence. As before, we define TGH3
= TrGH3

◦ Φ and RG
H3

= Ψ ◦ ResGH3
. Notice
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that the matrices used in the definitions of our chain homotopy equivalences

in the negative cone are precisely the transposes of the matrices used in the

positive cone as given in the proof of Theorem 4.33. Furthermore, if y3 does

not divide a monomial m in F2[x1, y1, x2, y2, y3] then we see that TGH3
( θ1θ2
my3

) = 0

which we can therefore identify with θ1θ2θ3
m

y3 for degree reasons as this product is

indeed zero, and similarly if we are looking at RG
H3

( Θ
m

) when m is a monomial in

F2[x1, y1, x2, y2, x3, y3] and both x3 and y1y2 do not divide m.

Finally, we look at the transfer and restriction maps in the six mixed cones.

As in Theorems 4.31 and 4.32, it suffices by symmetry to look at one of the three

mixed cones of Type I and one of the three mixed cones of Type II. However,

when considering each of these mixed cones there will also be two sub-cases as

unlike in the positive and negative cones the transfer and restriction maps are

not symmetric in the three C2-subgroups.

Theorem 4.36. The transfer and restriction maps TrGH3
and ResGH3

between the

G/H3 and G/G levels of the mixed cone of Type I in πFHF2 corresponding to

tridegrees (−p, q, r) with p ≥ 1 and q, r ≥ 0 are induced by the maps TGH3
and RG

H3

defined as follows between the two chain complexes

F2[x1,y1,x2,y2,x3,y3]
(x∞1 ,y∞1 )

{κ1}
f−→

RGH3

��

F2[x1,y1,x2,y2,x3,y3]
(x∞1 ,y∞1 )

{θ1}

F2[x1,y1,x2,y2,y3]
(x∞1 ,y∞1 )

{k1
3}

f3−→

TGH3

TT

F2[x1,y1,x2,y2,y3]
(x∞1 ,y∞1 )

{θ1}

each concentrated in two degrees whose homology computes the G/H3 and G/G

levels of this particular mixed cone. On the generators, we have that

1. TGH3
(θ1) = 0

2. TGH3
(k1

3) = y1y2 · θ1

3. RG
H3

(θ1) = θ1

4. RG
H3

(κ1) = y3 · k1
3.

The maps TGH3
and RG

H3
are extended in the natural way to the whole F2-

modules, where RG
H3

applied to any element involving x3 is zero.

Proof. At each tridegree (−p, q, r) with p ≥ 1 and q, r ≥ 0, the chain homotopy

equivalences we define between the triple complex computing πH3
∗ (S−pσ1+qσ2+rσ3∧

HF2) and the shifted copy of the double complex computing πH3
∗ (S−pσ1+qσ2∧HF2)

by r trivial suspensions are defined in the same way as in the proof of Theorem

4.33. We then use the transfer and restriction maps given in Section 4.2 to obtain

the expressions for TGH3
and RG

H3
.
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Theorem 4.37. The transfer and restriction maps TrGH3
and ResGH3

between the

G/H3 and G/G levels of the mixed cone of Type I in πFHF2 corresponding to

tridegrees (p, q,−r) with r ≥ 1 and p, q ≥ 0 are induced by the maps TGH3
and RG

H3

defined as follows between the two chain complexes

F2[x1,y1,x2,y2,x3,y3]
(x∞3 ,y∞3 )

{κ3}
f−→

RGH3

��

F2[x1,y1,x2,y2,x3,y3]
(x∞3 ,y∞3 )

{θ3}

F2[x1,y1,x2,y2,y3]
(y∞3 )

{
ξ3
y3

}
f3−→

TGH3

TT

F2[x1,y1,x2,y2,y3]
(y∞3 )

{
1
y3

}
each concentrated in two degrees whose homology computes the G/H3 and G/G

levels of this particular mixed cone. On the generators, we have that

1. TGH3

(
1
y3

)
= y3 · θ3

2. TGH3

(
ξ3
y3

)
= κ3

3. RG
H3

(θ3) = 0

4. RG
H3

(κ3) = y1y2 · 1
y3
.

The maps TGH3
and RG

H3
are extended in the natural way to the whole F2-

modules, where RG
H3

applied to any element involving x3 is zero.

Proof. At each tridegree (p, q,−r) with p, q ≥ 0 and r ≥ 1, the chain homotopy

equivalences we define between the triple complex computing πH3
∗ (Spσ1+qσ2−rσ3 ∧

HF2) and the downwards-shifted copy by r trivial suspensions of the double

complex computing πH3
∗ (Spσ1+qσ2 ∧ HF2) are defined in the same way as in the

proof of Theorem 4.35. We then use the transfer and restriction maps given in

Section 4.2 to obtain the expressions for TGH3
and RG

H3
.

Theorem 4.38. The transfer and restriction maps TrGH3
and ResGH3

between the

G/H3 and G/G levels of the mixed cone of Type II in πFHF2 corresponding to

tridegrees (p,−q,−r) with p ≥ 0 and q, r ≥ 1 are induced by the maps TGH3
and

RG
H3

defined as follows between the two chain complexes

F2[x1,y1,x2,y2,x3,y3]
(x∞2 ,y∞2 ,x∞3 ,y∞3 )

{ι1}
f−→

RGH3

��

F2[x1,y1,x2,y2,x3,y3]
(x∞2 ,y∞2 ,x∞3 ,y∞3 )

{θ2θ3}

F2[x1,y1,x2,y2,y3]
(x∞2 ,y∞2 ,y∞3 )

{
k2

3

y3

}
f3−→

TGH3

TT

F2[x1,y1,x2,y2,y3]
(x∞2 ,y∞2 ,y∞3 )

{
θ2
y3

}
each concentrated in two degrees whose homology computes the G/H3 and G/G

levels of this particular mixed cone. On the generators, we have that
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1. TGH3

(
θ2
y3

)
= y3 · θ2θ3

2. TGH3

(
k2

3

y3

)
= ι1

3. RG
H3

(θ2θ3) = 0

4. RG
H3

(ι1) = y1y2 · θ2y3
.

The maps TGH3
and RG

H3
are extended in the natural way to the whole F2-

modules, where RG
H3

applied to any element involving x3 is zero.

Proof. This follows using the same chain homotopy equivalences defined in the

proof of Theorem 4.35.

Theorem 4.39. The transfer and restriction maps TrGH3
and ResGH3

between the

G/H3 and G/G levels of the mixed cone of Type II in πFHF2 corresponding to

tridegrees (−p,−q, r) with p, q ≥ 1 and r ≥ 0 are induced by the maps TGH3
and

RG
H3

defined as follows between the two chain complexes

F2[x1,y1,x2,y2,x3,y3]
(x∞1 ,y∞1 ,x∞2 ,y∞2 )

{ι3}
f−→

RGH3

��

F2[x1,y1,x2,y2,x3,y3]
(x∞1 ,y∞1 ,x∞2 ,y∞2 )

{θ1θ2}

F2[x1,y1,x2,y2,y3]
(x∞1 ,y∞1 ,x∞2 ,y∞2 )

{t3}
f3−→

TGH3

TT

F2[x1,y1,x2,y2,y3]
(x∞1 ,y∞1 ,x∞2 ,y∞2 )

{θ1θ2}

each concentrated in two degrees whose homology computes the G/H3 and G/G

levels of this particular mixed cone. On the generators, we have that

1. TGH3
(θ1θ2) = 0

2. TGH3
(t3) = y1y2 · θ1θ2

3. RG
H3

(θ1θ2) = θ1θ2

4. RG
H3

(ι3) = y3 · t3.

The maps TGH3
and RG

H3
are extended in the natural way to the whole F2-

modules, where RG
H3

applied to any element involving x3 is zero.

Proof. This follows using the same chain homotopy equivalences defined in the

proof of Theorem 4.33.

4.8 Applying the Bockstein spectral sequence

In this section we explain how we can use our knowledge of πFHF2 to understand

πFHZ using Bockstein spectral sequences. For simplicity, we will focus on the

positive cone and we begin by looking at the top level. Given a fixed tridegree

(p, q, r) with p, q, r ≥ 0, we have a Bockstein spectral sequence

πG∗ (Σpσ1+qσ2+rσ3HF2)[v0]⇒ πG∗ (Σpσ1+qσ2+rσ3HZ∧2 ) (4.1)
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corresponding to the unrolled exact couple

· · · → πG∗ (Σpσ1+qσ2+rσ3HZ) 2 //
dd

πG∗ (Σpσ1+qσ2+rσ3HZ)

}}

2 //
aa

πG∗ (Σpσ1+qσ2+rσ3HZ)→ · · ·

zz
πG∗ (Σpσ1+qσ2+rσ3HF2) πG∗ (Σpσ1+qσ2+rσ3HF2)

induced by the short exact sequence 0 → Z 2−→ Z → Z/2 → 0. In particular,

we have that E1
s,∗ = πGs (Σpσ1+qσ2+rσ3HF2)[v0] and the d1 differential is given by

d1(x) = β(x)v0 where β is the Bockstein homomorphism, which decreases degree

by one, and d1 increases the v0-degree by one. More generally, the dr differential

increases v0-degree by r, and torsion of order 2k is encoded by a v0-tower of height

k. Further detail on the Bockstein spectral sequence can be found in [25, Chapter

10]. Note that we have similar Bockstein spectral sequences for the G/Hi levels

of πFHF2 and πFHZ for i ∈ {1, 2, 3}, as well as of course the G/e levels.

Theorem 4.40. The Bockstein spectral sequence (4.1) collapses to the E2-page.

Proof. By the construction of the Bockstein spectral sequence, it suffices to show

that the Bockstein homomorphism β is exact. First, recall by Theorem 4.14 that

the positive cone in πGFHF2 is given by the ring

F2[x1, y1, x2, y2, x3, y3]

(x1y2y3 + y1x2y3 + y1y2x3)
.

Now, observe that β(yi) = xi and β(xi) = 0 for each i ∈ {1, 2, 3}. Indeed, the

singly-graded chain complex of Mackey functors computing π∗(Σ
σiHZ) is given

by

Z

1
��

Z

∆
��

2oo Z

1
��

Z

1
��

2oo

Z[G/G]

2

UU

1
��

Z[G/Hi]

∇

UU

1
��

∇oo Z

2

UU

1
��

Z

2

UU

∆
��

2oo

Z[G/G]

2

TT

Z[G/Hi]

2

TT

∇oo Z[G/G]

2

UU

Z[G/Hi],

∇

UU

∇oo

where on the left we are looking at the G/e, G/Hi and G/G levels of the chain

complex of Mackey functors and on the right we are looking at the G/e, G/Hj and

G/G levels for any j 6= i. In particular, the chain complex computing πG∗ (ΣσiHZ)

is given by Z 2←− Z, whereas the chain complex computing πG∗ (ΣσiHF2) is given

by F2
0←− F2. To compute β(yi), we lift yi to the integral chain 1 ∈ Z which maps
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under the differential to 2 ∈ Z and thus after dividing by 2 we are left with the

integral chain 1 ∈ Z. Finally, after reducing mod 2 we get that β(yi) = xi. Since

xi is in degree 0 and the chain complexes are concentrated in degrees 0 and 1 we

have that β(xi) = 0. Since we have computed the Bockstein homomorphism β

on the generators and we know that β is a derivation (see [26, Section 3.E]), we

have therefore completely determined β in the positive cone.

Now, consider an arbitrary class in the positive cone represented by a mono-

mial m = xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3 that is not in the top degree in its corresponding

tridegree (i1 + j1, i2 + j2, i3 + j3), so we can assume without loss of generality that

i1 ≥ 1. Suppose first that j1, j2 and j3 are all even. Then, by writing

xi11 y
j1
1 x

i2
2 y

j2
2 x

i3
3 y

j3
3 = xi11 y

j1
2

1 y
j1
2

1 xi22 y
j2
2

2 y
j2
2

2 xi33 y
j3
2

3 y
j3
2

3

and using that β is a derivation determined by β(yi) = xi and β(xi) = 0 for all

i ∈ {1, 2, 3}, we see that β(m) = 0. Thus, we need to show that m is in the image

of β. However, note that

β

(
y1

x1

m

)
= β(y1)

m

x1

+ y1β

(
m

x1

)
= x1

m

x1

= m,

where the second term in the first equality is zero by a similar argument to why

β(m) = 0 using that j1, j2 and j3 are all even. Next, suppose that at least one

but at most two of j1, j2 and j3 are odd. Let k, ` ∈ {1, 2, 3} be such that only jk

and j` are odd, and let

yk` =

yk if k = `,

yky` otherwise.

Then, we have that

β(m) = β(yk`)
m

yk`
+ yk`β

(
m

yk`

)
= β(yk`)

m

yk`
,

which is non-zero as it is not in the ideal (x1y2y3 + y1x2y3 + y1y2x3) since β(yk`)

is a sum of at least one and at most two distinct monomials. Finally, suppose

that j1, j2 and j3 are all odd. Then, we see that

β(m) = β(y1y2y3)
m

y1y2y3

+ y1y2y3β

(
m

y1y2y3

)
= (x1y2y3 + y1x2y3 + y1y2x3)

m

y1y2y3

which is zero, so we again need to show that m is in the image of β. However,
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we see that

m = x1y2y3
m

x1y2y3

= (y1x2y3 + y1y2x3)
m

x1y2y3

= (x2y3 + y2x3)
y1m

x1y2y3

= β

(
y2y3 ·

y1m

x1y2y3

)
,

where the last equality follows since y1m
x1y2y3

contains only even powers of y1, y2

and y3.

By the result of Theorem 4.40 we know that all torsion has order 2, i.e. there

is no torsion of order 2k for k > 1 as the E∞-term contains only v0-towers of

height 1. Since β(yj11 y
j2
2 y

j3
3 ) = 0 if and only if j1, j2 and j3 have the same parity,

it follows that we get a Z at the top degree in each tridegree (p, q, r) if p, q and r

have the same parity and otherwise we get 0. In all other degrees, the non-zero

homology groups will be various powers of Z/2 given by looking at the rank of

β in each degree. We can in fact write down a Poincaré series for the 2-torsion

given by dividing the Poincaré series of Theorem 4.2 by x+ 1 (after subtracting

any term contributing a Z in homology), using that at each tridegree β gives an

exact sequence of F2-vector spaces (with dimensions given by the Poincaré series

of Theorem 4.2) as well as the series expansion of 1
x+1

.

Remark 4.41. Since the Bockstein spectral sequence converges to the homology

with coefficients in Z∧2 (rather than with coefficients in Z), we are using in the

above that the homology groups with integer coefficients are finitely-generated,

which follows since these are given by the homology of the triple complex obtained

by tensoring the cellular chain complexes of Z[G]-modules for our explicit G-CW

structures on Spσ1 , Sqσ2 and Srσ3 given in Section 4.2. Furthermore, we are

using that there is no p-torsion for any odd prime p, and this can be seen by

running the Bockstein spectral sequence induced by the short exact sequence

0 → Z p−→ Z → Z/p → 0 after computing the homology πG∗ (Σpσ1+qσ2+rσ3HFp)
which is zero except possibly at the top degree depending on p, q and r as for

example the map Fp
2−→ Fp is an isomorphism.

Note that by the result of Theorem 4.15, for example that the G/H1 level of

the positive cone in πFHF2 is given by the ring

F2[y1, x2, y2, x3, y3]

(x2y3 + y2x3)
,
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a similar argument to the proof of Theorem 4.40 can be used to show that the

Bockstein spectral sequence on the G/Hi levels for each i ∈ {1, 2, 3} collapses to

the E2-page, and moreover since β(yi) = xi and β(xi) = 0 we see that β commutes

with the restriction maps. Therefore, we can in fact use the Bockstein spectral

sequence on the level of Mackey functors (together with Proposition 2.15) to help

deduce πFHZ from πFHF2 in the positive cone. We claim that similar results

involving the Bockstein spectral sequence hold for the negative and mixed cones

using the algebraic descriptions from Sections 4.6 and 4.7, but we do not explore

this here. Alternatively, we can compute the homology at the top level with

integer coefficients by iteratively using the spectral sequence of a double complex

(as in Section 4.3) to compute the homology of the analogous triple complex with

integer coefficients at each tridegree (p, q, r) ∈ Z3 as discussed in Section 4.2.

Example 4.42. Suppose that we want to compute πG∗ (Σ2σ1+σ2+2σ3HZ) directly,

without using the Bockstein spectral sequence. That is, we want to compute the

homology of the triple complex

Z oo 2
??

2

Z>>
∇

Z>>
∇

Z oo ∇ Z2 oo
[ 1 −1

−1 1 ]

[ 1 −1

−1 1 ]

��

Z2

[ 1 −1

−1 1 ]

��

Z oo 2
??

2

Z>>
∇

Z>>
∇

2

��

Z oo ∇

2

��

Z2

∇

��

oo
[ 1 −1

−1 1 ]
Z2

∇

��

Z oo 2
??

2

Z>>
2

Z>>
2

Z oo 2 Z Z
As in the proof of Theorem 4.2, we will iteratively use the spectral sequence of

a double complex. In particular, we run the spectral sequence converging to the

homology with respect to d1 +d2 where we first take homology with respect to d1,

giving us the following E1-page (noting that we draw the horizontal cross sections

of the above triple complex with increasing degree in the σ3-direction going left

to right):

Z/2 0 Z

Z/2 0 Z
2

OO Z/2 0 Z

0 0 Z
2

OO Z/2 0 Z

0 0 Z
2

OO
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Therefore, after taking homology with respect to d2 we get the E2-page

Z/2 0 Z/2

Z/2 0 0

Z/2 0 Z/2

0 0 0

Z/2 0 Z/2

0 0 0

Notice that there are no higher differentials, so the spectral sequence converging

to the homology with respect to d1 + d2 collapses on the E2-page. Hence, since

there are no non-zero differentials in the σ3-direction on the above E2-page it

follows that the Poincaré series of the 2-torsion is given by 1 + 2x+ 2x2 +x3 +x4,

which indeed is precisely what we get by dividing the Poincaré series of Theorem

4.2 at tridegree (2, 1, 2) by x+ 1.



Bibliography

[1] M. A. Hill, M. J. Hopkins and D. C. Ravenel. On the nonexistence of elements

of Kervaire invariant one. Ann. of Math. (2), 184(1):1-262, 2016.

[2] J. Holler and I. Kriz. On RO(G)-graded equivariant “ordinary” cohomology

where G is a power of Z/2. Algebr. Geom. Topol., 17(2):741-763, 2017.

[3] B. Guillou and C. Yarnall. The Klein four slices of ΣnHF2. Mathematische

Zeitschrift, 2019.

[4] P. Hu and I. Kriz. Real-oriented homotopy theory and an analogue of the

Adams-Novikov spectral sequence. Topology, 40(2):317-399, 2001.

[5] B. Day. On closed categories of functors. In Reports of the Midwest Category

Seminar, IV, Lecture Notes in Mathematics, Vol. 137, pages 1-38. Springer,

Berlin, 1970.

[6] J. P. C. Greenlees and J. P. May. Equivariant stable homotopy theory. In

Handbook of algebraic topology, pages 277-323. North-Holland, Amsterdam,

1995.

[7] N. Ricka. Equivariant Anderson duality and Mackey functor duality. Glasg.

Math. J., 58(3):649-676, 2016.

[8] C. May. A structure theorem for RO(C2)-graded Bredon cohomology. Algebr.

Geom. Topol., 20(4):1691-1728, 2020.

[9] K. Loyd. Box Product of Cp-Mackey Functors. arXiv:1710.08560, 2017.

[10] Z. Li. Box Product of Mackey Functors in Terms of Modules.

arXiv:1509.07051, 2015.

[11] M. Shulman. Equivariant local coefficients and the RO(G)-graded cohomol-

ogy of classifying spaces. PhD thesis, University of Chicago, 2010.

101



102 BIBLIOGRAPHY

[12] L. G. Lewis, Jr. The theory of Green functors. Mimeographed notes, Uni-

versity of Chicago, 1980.

[13] Y. Zou. RO(D2p)-graded Slice Spectral Sequence of HZ. PhD thesis, Uni-

versity of Rochester, 2018.

[14] M. Zeng. Equivariant Eilenberg-Mac Lane spectra in cyclic p-groups.

arXiv:1710.01769, 2017.

[15] J. McCall. The slice spectral sequence for C2 equivariant Real K-theory.

Honours thesis, Australian National University, 2020.

[16] D. Heard and V. Stojanoska. K-theory, reality and duality. J. K-Theory,

14(3):526-555, 2014.

[17] D. Dugger. Bigraded cohomology of Z/2-equivariant Grassmannians. Geom.

Topol., 19(1):113-170, 2015.

[18] C. A. Weibel. An introduction to homological algebra. Cambridge Studies in

Advanced Mathematics, vol. 38, Cambridge University Press, 1994.

[19] J. P. May. Equivariant homotopy and cohomology theory. CBMS Regional

Conference Series in Mathematics, vol. 91, Conference Board of the Mathe-

matical Sciences, Washington, DC, 1996. With contributions by M. Cole, G.

Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis,

Jr., R. J. Piacenza, G. Triantafillou and S. Waner.

[20] J. Holler and I. Kriz. On the Coefficients of (Z/p)n-Equivariant Ordinary

Cohomology with Coefficients in Z/p. arXiv:2002.05284, 2020.

[21] I. Kriz and Y. Lu. On the RO(G)-graded coefficients of dihedral equivariant

cohomology. arXiv:2005.01225, 2020.

[22] D. Dugger. An Atiyah-Hirzebruch spectral sequence for KR-theory. K-

theory, 35(3-4):213-256 (2006), 2005.

[23] D. Dugger. Coherence for invertible objects and multigraded homotopy rings.

Algebr. Geom. Topol., 14(2):1055-1106, 2014.

[24] M. A. Hill, M. J. Hopkins and D. C. Ravenel. Equivariant stable homotopy

theory and the Kervaire invariant problem. Book in progress. Available at

https://web.math.rochester.edu/people/faculty/doug/kervaire.html.

https://web.math.rochester.edu/people/faculty/doug/kervaire.html


BIBLIOGRAPHY 103

[25] J. McCleary. A User’s Guide to Spectral Sequences. Second edition, Cam-

bridge Studies in Advanced Mathematics, vol. 58, Cambridge University

Press, 2001.

[26] A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge,

2001.

[27] L. G. Lewis, Jr. The RO(G)-graded equivariant ordinary cohomology of

complex projective spaces with linear Z/p actions. In Algebraic topology and

transformation groups (Göttingen, 1987), volume 1361 of Lecture Notes in

Math., pages 53-122. Springer, Berlin, 1988.


	Acknowledgements
	Abstract
	Introduction
	Background
	The category of orthogonal G-spectra
	Mackey and Green functors
	The homotopy of equivariant spectra

	C2-equivariant stable homotopy theory
	The RO(C2)-graded homotopy Mackey functors
	Anderson duality
	The ring structure of the RO(C2)-graded homotopy

	The Klein four homology of a point
	(C2 C2)-Mackey functors and representations
	A trigraded complex of Mackey functors
	The Poincaré series of Holler-Kriz and duality
	The ring structure of the positive cone
	The negative and mixed cones
	An algebraic description of the homology
	The complete Mackey functor structure
	Applying the Bockstein spectral sequence

	Bibliography

