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Abstract

Let G = Cy x Cy be the Klein four group. Partial computations of the RO(G)-
graded homotopy Mackey functors my HIF; of the equivariant Eilenberg-MacLane
spectrum corresponding to the constant Mackey functor Fy can be found in the
literature. In particular, Holler-Kriz computed in [2] the complete additive struc-
ture of the top levels 7§ HF5 of the Mackey functors, and Guillou-Yarnall in (3]
computed the homotopy Mackey functors graded by multiples of the regular rep-
resentation p, namely the integer graded homotopy Mackey functors m, (5% HF5)
for each k € Z. In this thesis, we discuss the multiplicative structure of the top
level WgH [F, and moreover give a complete algebraic description of the homotopy
Mackey functors making up m, HF; graded by all of RO(G). Finally, we use the
Bockstein spectral sequence to compute the portion of ﬂfH Z graded by actual

representations using our algebraic description of WgH F,.
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Chapter 1

Introduction

A longstanding problem in algebraic topology is that of determining values of
n = 2F — 2 such that there exists an n-dimensional framed manifold with non-
zero Kervaire invariant (necessarily then equal to one), called the Kervaire in-
variant one problem. This problem has now been largely settled, and we know
that there exist framed m-manifolds with non-zero Kervaire invariant only for
n = 2,6, 14, 30,62 and possibly 162, which is the only open case. In particular,
Hill, Hopkins and Ravenel proved in the famous paper [1] that no such framed
n-manifolds exist for n > 254 (i.e. for £ > 8), and in doing so made vast and
groundbreaking developments in equivariant stable homotopy theory.

In equivariant stable homotopy theory, we are interested in the presence of
actions on our spaces and spectra by a finite group G, and we call these G-spaces
and G-spectra. In doing so, the role of abelian groups in non-equivariant sta-
ble homotopy theory are replaced by Mackey functors which contain an abelian
group for each subgroup of G. That is, we want to assign algebraic invariants
that captures information about how our spaces or spectra behave under the
action of each subgroup of G and how these relate via so-called transfer and re-
striction maps. Furthermore, whilst in non-equivariant stable homotopy theory
these algebraic invariants are often graded over the integers Z, we can grade our
equivariant algebraic invariants over the orthogonal representation ring RO(G).
If X is G-spectrum, then the algebraic invariants of primary interest in this thesis
are its RO(G)-graded homotopy Mackey functors m, (X).

If X is the equivariant Eilenberg-MacLane spectrum HM corresponding to a
Mackey functor M, the homotopy Mackey functors w, HM can be thought of as
the equivariant homology of a point with coefficients in M. These computations

are non-trivial, even for the cyclic group Cs of order two. The equivariant homol-
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ogy of a point for the cyclic group Cs with coefficients in the constant Mackey
functor Z was used in Hill, Hopkins and Ravenel’s solution to the Kervaire in-
variant one problem. Other computations of the equivariant homology of a point
for various finite groups have been done recently, for example in [2], [14], [20] and
[21].

The main goal of this thesis is to completely determine the RO(G)-graded
homotopy Mackey functors w, HIFy for the Klein four group G = Cy x Cy, where
HTF, is the equivariant Eilenberg-MacLane spectrum corresponding to the con-
stant Mackey functor Fy. Here Fy denotes the field with two elements, and
one can think of the G-spectrum HIF, as a G-equivariant analogue of the non-
equivariant Eilenberg-MacLane spectrum HIF, representing singular homology
and cohomology with coefficients in F5. The additive structure of WEH [Fy, where
WEH& denotes the abelian groups in the homotopy Mackey functors m, HF,
corresponding to the group G = Cy x (5 itself, was computed recently by Holler
and Kriz in [2]. We use the word additive here as the G-spectrum HTF, is a com-
mutative ring spectrum, which implies that 7, HIF; is not only an RO(G)-graded
Mackey functor but also an RO(G)-graded Green functor, where a Green functor
can be thought of as a multiplicative analogue of a Mackey functor. In particu-
lar, we have that 7§ HF, (and moreover w§ HF, for each subgroup H of G) is a
commutative ring, and a description of the ring structure does not appear in the
literature.

In Chapter 3, we discuss the analogue of the above problem for the cyclic
group G = (5 of order two. The RO(C,)-graded Green functor structure of
74 HIF; is known, where now [y is the constant Cs-Mackey functor associated to
Fy. For example, the Mackey functor structure of 7, HF; can be found in 3,
Section 3.1] and the ring structure of 74> HF, is described in [17, Section 2] and
[4, Section 6]. The portion of ﬂiQH [F, corresponding to actual representations
in RO(C5), which in the literature is called the positive cone, is given by the
polynomial ring Fy[x, y] on two particular classes x and y. The ring structure is
more complicated for virtual representations, called the negative cone, whereby
there exists a class 6 that is divisible (in a formal sense) by monomials in Fy|x, y].
A picture of this description of the ring structure is given in Figure 3.2.

Returning to the group G = C; x (5, we also call the portion of WEH]FJ
corresponding to actual representations by the positive cone. However, the group
Cy x Cy has three non-trivial irreducible real representations (as opposed to one
as is the case for Cy) which we denote by o1, 09 and o3, and so as an abelian
group we have that RO(G) = Z{1, 01, 09,03}. We therefore break up the portion



of 7T§H [, corresponding to virtual representations into the negative cone, which
consists of elements in RO(G) such that the coefficient of each o; is negative, as
well as six mixed cones where there is a mix of actual and virtual representations,
i.e. at least one of the coefficients of the o; is positive and at least one of the
coefficients is negative. In Chapter 4, we give a description of the multiplicative

structure of Wf,H [F, and give a closed-form answer in the positive cone.
Theorem 1.1. The positive cone in WEHIF_Q 1s given by the quotient ring

FQ['TD Y1,T2, Y2, T3, 93]
(T1Y2ys3 + Y122y3 + Y1y2xs)

Here the classes z; and y; for i € {1,2,3} are defined in Section 4.4, and
can be thought of as generating three copies of the positive cone in 7'('22]‘[&
corresponding to the three Cy-subgroups of GG, which we denote by H;, H, and
Hj;. In fact, as we discuss in Section 4.6, the homology in the negative and mixed
cones can be expressed in terms of the polynomial f = x1y2y3 + y122y3 + y1y223.
Namely, we can view the quotient ring of Theorem 1.1 as the homology of the

chain complex

]FQ[xlu Y1, T2,Y2, T3, 93]{5} L FQ[xla Y1,T2,Y2, T3, y3]{1}

concentrated in two degrees, where this map sends

m - Z = (2192Y3 + Y1223 + y1yexs)m - 1

for m a monomial in Fy[xy, y1, 2o, Y2, T3, y3], and this map is injective but not
surjective. The negative and mixed cones can be similarly expressed as the ho-
mology of a single map given by multiplication by the polynomial f, where in
the negative cone the map is surjective but not injective and in the mixed cones
is neither injective nor surjective.

This algebraic description of the homology WS,H& can be extended to give
an algebraic description of the complete Mackey functor structure 7, HIF; as we
discuss in Section 4.7. Partial computations of the homotopy Mackey functors
of HF, were done by Guillou and Yarnall in [3] in the context of understanding
the slice spectral sequence for X" HF; where n > 0. Namely, they computed the
homotopy Mackey functors graded by multiples of the regular representation of
G. The slice spectral sequence was a key tool in the Hill, Hopkins and Ravenel
solution to the Kervaire invariant one problem, and the computation of all the
homotopy Mackey functors in this thesis is useful when analysing the slice spec-
tral sequence for BV HF, given an arbitrary V € RO(G). The Mackey functor
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structure in the positive cone has a particularly nice form, as is the case for the

ring structure of wf,H I¥,.

Theorem 1.2. The Mackey functor structure of the positive cone in w, HIFy is
given by the Mackey functor of RO(G)-graded rings

Fa1,y1,22,92,23,Y3)
(z1y2y3+y122y3+Y1Y273)

i

Fa[y1,22,y2,%3,y3] Falz1,y1,y2,%3,y3] Folz1,y1,22,y2,y3]
(2y3+y273) (z1y3+y123) (z1y2+y122)

\/

Fy [yl, Yo, y3]

where each restriction map s the identity on a generator of the domain that is also
a generator of the codomain and is zero on a generator otherwise. The transfer

maps are always zero.

Many of the computations in Chapter 4 can be adapted to analysing 7, HZ
where Z is the constant Mackey functor associated to the integers Z. Indeed,
we construct an explicit chain complex of Mackey functors in Section 4.2 whose
homology at each tridegree gives us m, HF5, and an analogous chain complex can
be constructed with integer coefficients. We discuss this briefly in Section 4.8 in
the context of the Bockstein spectral sequence and how it can be used to deduce
Ty HZ from 7, HIFy, at least in the positive cone. The result with integer coef-
ficients is not in the literature, however it can be found for the group Cy in [22,
Theorem 2.8]. The collapsing of the Bockstein spectral sequence to the E?-page
that we prove in Section 4.8 has been used by McCall [15] in understanding the
slice spectral sequence for Cy-equivariant Real K-theory.

The structure of the thesis is as follows. In Chapter 2, we discuss the neces-
sary background in equivariant stable homotopy theory needed in later chapters,
including the definition of G-spectra, the notion of Mackey functors and Green
functors as well as the concept of the homotopy Mackey functors of a G-spectrum.
In Chapter 3, we compute the known RO(Cy)-graded Green functor structure of
74 HF; and discuss evident symmetries in the result which can be explained using
Anderson duality. The heart of the thesis is Chapter 4, where we generalise the
results and methods of Chapter 3 to the Klein four group.



Chapter 2
Background

In this chapter, we introduce some basic concepts of equivariant stable homotopy
theory that will be assumed in later chapters. Furthermore, we will be working
with an arbitrary finite group G throughout this chapter, even though we will be
focusing on the cyclic group C5 of order two and the Klein four-group Cs x Cy
in Chapters 3 and 4. See [24] and [19] for a thorough introduction to equivariant
stable homotopy theory.

2.1 The category of orthogonal GG-spectra

Let G be an arbitrary finite group, which we fix throughout this chapter. Further-
more, when we use the word space we mean a compactly generated weak Hausdorff
topological space. Our goal in this section is to introduce the fundamental objects
in equivariant stable homotopy theory, namely orthogonal G-spectra. The first

step however is to understand the notion of G-spaces.

Definition 2.1. A G-space is a space X together with an action of the group
G. A G-equivariant map (or simply equivariant map) f: X — Y of G-spaces is
a map of the underlying spaces (i.e. a continuous map) that commutes with the

G-actions on X and Y. That is, we require that the diagram

X2 .x
YLY

commutes for every g € G. A pointed G-space is a G-space equipped with a
basepoint fixed by the action of G.
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Any G-space X can be made into a pointed G-space by adding in a disjoint
basepoint which we define to be fixed by the G-action, and we denote the resulting
pointed G-space by X,. Now, we define the category Top” to have G-spaces as its
objects and equivariant maps as its morphisms. Similarly, we define the category
T to have pointed G-spaces as its objects and equivariant maps (which preserve
the basepoints) as its morphisms. However, we define the category 7g to have
pointed G-spaces as its objects but continuous maps as its morphisms, i.e. we
allow for non-equivariant maps between G-spaces in the category 7. Both 7¢
and 7g are closed symmetric monoidal categories under smash product with the
O-sphere S° as the unit (with trivial G-action). Note here that the G-action on
the smash product of pointed G-spaces is induced by the diagonal G-action.

Furthermore, notice that the category 7¢ is enriched over 7. Indeed, each
morphism object 7¢(X,Y) in T is the space of all continuous maps f: X — Y
and we can equip this space with the conjugate G-action (g- f)(z) = gf(g~'z), so
we can identify 7(X,Y) as an object of T¢. Furthermore, a simple calculation

shows that composition
Te(Y,Z2) NTa(X,Y) = Ta(X, Z)

in 7¢ is equivariant with respect to the conjugate G-action. We have that 7 is a
subcategory of T, and thus the category 7T is enriched over itself. The category
TC is enriched over the category 7 of pointed spaces with continuous maps
preserving the basepoints, and the morphism objects 7¢(X,Y) in the category
T are precisely the G-fixed points T¢(X,Y )% of the morphism objects in Tg
following from the definition of the conjugate G-action.

In order to define orthogonal G-spectra, we need to understand the Mandell-
May category fZ¢. First, recall that a finite-dimensional real representation V'
of G is called orthogonal if the underlying finite-dimensional real vector space
V' is also an inner product space, and each g € G acts on V as an element of
the group O(V') of orthogonal endomorphisms of V', i.e. endomorphisms of V'
that preserve the inner product. Now, given finite-dimensional real orthogonal
G-representations V' and W, let O(V, W) denote the space of orthogonal (not
necessarily equivariant) embeddings V' — W. Note that G acts on O(V, W) via

the conjugate action. Then, consider the space
{(f,w) e O(V,W)x W :w e f(V): c W},

which is in fact a vector bundle on O(V, W) under the projection map onto the

first component.
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Definition 2.2. The objects of the Mandell-May category #¢ are finite-dimensional
real orthogonal G-representations V. Given two objects V' and W in the category
Ja, we define the morphism set _Z(V, W) to be the Thom space of the above
vector bundle on O(V, W).

Recall that the Thom space of a vector bundle is the quotient space obtained
by taking the one-point compactification of each of the fibres and identifying all

of the points-at-infinity. That is, as a set we have that

VW)= \/ sV

feo(V,w)

The Mandell-May category #¢ is enriched over 7¢. Indeed, each Zg(V,W) is
a pointed G-space with basepoint the point-at-infinity and has G-action induced
by the action of G on each orthogonal complement f(V)* C W for f € O(V,W).

Furthermore, the map

JaV,W)N Fa(UV) = Za(U,W)
induced by composition of orthogonal embeddings is G-equivariant.

Example 2.3. If V = 0, then the Thom space Z(V, W) is the representation
sphere SW i.e. the one-point compactification of W with G acting trivially on
the point-at-infinity, which follows since there is only one embedding 0 — W and
the orthogonal complement of the image of this embedding is W'.

Example 2.4. If the dimension of V' is greater than the dimension of W as
finite-dimensional real vector spaces, then O(V, W) is empty so the Thom space
Fc(V,W) is a point, i.e. only consists of the point-at-infinity. If the dimensions
of V- and W are equal, then the embedding space is O(V') and the orthogonal
complement of any element of O(V') is zero. Hence, the Thom space in this case

is O(V), with G acting on O(V') via the conjugate action.

Now that we understand the Mandell-May category #;, we are ready to
define orthogonal G-spectra.

Definition 2.5. The category Sp® of orthogonal G-spectra is the enriched functor
category [_Zg, 7). That is, an orthogonal G-spectrum X is an enriched functor
/G — TC,
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By Definition 2.5, we can therefore think of an orthogonal G-spectrum X as
consisting of a pointed G-space Xy for each finite-dimensional real orthogonal

G-representation V', together with structure maps
Tac(V.W)AN Xy = Xw

which we require to be equivariant, i.e. that the structure maps are morphisms
in the category 7¢. Note that the morphisms in the category Sp® are natural
transformations of enriched functors #g — T¢. We will often drop the word
‘orthogonal’ and refer to objects of Sp“ simply as G-spectra. Furthermore, mor-

phisms in the category Sp® will be called equivariant maps of G-spectra.

Definition 2.6. If K is a pointed G-space, then its suspension G-spectrum %*°K
is defined by

(2K, =XVK
for all objects V in ¢, where 3V K := SV A K.

We can also more generally take the smash product of a pointed G-space with

a G-spectrum in the sense of Definition 2.7.

Definition 2.7. Let K be a pointed G-space and X a G-spectrum. Then, their
smash product is the G-spectrum K A X defined by

(KANX)y =KAXy
for all objects V in _Zg.

Note that Definitions 2.6 and 2.7 are using that the category Sp© = [ Aa, TC]
of G-spectra is tensored over T, so an equivariant map f: K — L of pointed

G-spaces induces a map
fANXKANX - LAX

of G-spectra for every G-spectrum X. We define the smash product of G-spectra

as follows.

Definition 2.8. Let X and Y be objects in Sp¥ = [ Zg, T¢]. Then, their
smash product X ANY is defined to be the left Kan extension of the composite
Ao (X xY) of the product of the functors X and Y with the smash product
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on pointed G-spaces along the direct sum @ of finite-dimensional real orthogonal

representations:

Jox Jo—"TsTOxTC L sT6

That is, the functor X AY is initial among functors Z: Zg — T¢ with natural
transformations
No(X xXY) = Zod.

This definition is an example of Day convolution as given in [5].

Theorem 2.9. The category Sp© of orthogonal G-spectra is a closed symmetric
monoidal category with respect to the smash product of Definition 2.8. The unit
for the smash product is the sphere spectrum S° defined by (S™°)y = _#¢(0,V) =
Sv.

Proof. This follows from the Day convolution theorem, using that #¢ is a small
symmetric monoidal category (with respect to direct sum) enriched over T¢,
and 7€ is a cocomplete closed symmetric monoidal category with respect to the

smash product of pointed G-spaces. ]

Remark 2.10. The notation S=° for the sphere spectrum as in the statement
of Theorem 2.9 was adopted by Hill, Hopkins and Ravenel to help distinguish
it from the ordinary sphere S°, which has previously also been used to denote
the sphere spectrum. More generally for an actual G-representation U we define
the G-spectrum S~V by (S7Y)y = _Z¢(U,V) known as a virtual representation

sphere as we will see in Section 2.3.

2.2 Mackey and Green functors

In this section we introduce the concepts of Mackey functors and Green functors,
which will play a central role throughout later chapters. One may think of Mackey
functors as generalising the role that abelian groups play in non-equivariant stable
homotopy theory. For example, when computing singular (co)homology of a space
we take coefficients in some abelian group, whereas when we consider equivariant

(co)homology theories our coefficient abelian group becomes a coefficient Mackey
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functor. Informally, a G-Mackey functor consists of an abelian group for each
subgroup of G along with transfer and restriction maps between these abelian
groups.

We will give one of two equivalent definitions of a Mackey functor. Although
the definition that we will not present more closely resembles the above informal
notion of a Mackey functor, the definition that we do give will be more useful
when we define Green functors and the box product of Mackey functors, and is
also more elegant in that it defines a Mackey functor as indeed a single functor.
First, we need to define the Lindner category B Let Fo denote the category

whose objects are finite G-sets and whose morphisms are equivariant maps.

Definition 2.11. The objects of the Lindner category 9B/, are precisely the ob-
jects of Fg, i.e. finite G-sets. However, a morphism from a finite G-set X to a
finite G-set Y in the category %/, is an equivalence class of diagrams (which we
call spans) of the form X «+- A — Y, where the maps A — X and A — Y are
morphisms in Fg. Two such spans X < A — Y and X < B — Y are defined to
be equivalent if there is an isomorphism A — B in Fg (i.e. a bijective equivariant

map) such that the diagram
A

X Y
B
commutes. The composite of two morphisms represented by the spans X < A —

Y and Y < B — Z is the equivalence class of the span X <« C' — Z obtained
from the pullback diagram

A/i\B
ANVN

For all objects X and Y in 4, the morphism set %/, (X,Y) is an abelian
monoid under disjoint union, where the disjoint union of the morphisms repre-
sented by X < A — Y and X < B — Y is the equivalence class of the span
X «+ AU B — Y with the evident maps ALUB — X and AU B — Y. Note that
the zero object of the abelian monoid %, (X,Y) is the equivalence class of the
span X < () = Y.
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Definition 2.12. The objects of the Burnside category B are precisely the
objects of F¢ (and of %.). However, each morphism set B¢ (X,Y) is the group
completion of the abelian monoid % (X,Y).

In particular, the Burnside category % is enriched over the category Ab of
abelian groups. Now that we have constructed the Burnside category, we are

ready to define a Mackey functor.

Definition 2.13. A Mackey functor (or G-Mackey functor) is an additive functor
M: Bg — Ab. The functor M being additive means that it is an enriched functor
over Ab and it sends disjoint unions of finite GG-sets to direct sums of abelian

groups.

An equivalent definition of a Mackey functor as mentioned earlier is given in
[1, Definition 3.1]. The category Mack(G) of G-Mackey functors is an abelian
category with addition defined in terms of the addition on each level, i.e. on the
image M (X) of each finite G-set X. Note that we could have equivalently defined
a Mackey functor as a contravariant functor M: BZ% — Ab since following from
how we defined morphisms in % in terms of equivalence classes of spans we have
that B = B. We will always use an underline to denote a Mackey functor as
in Definition 2.13.

Since any finite G-set can be decomposed as a disjoint union of orbits of the
form G/H for H a subgroup of G and a Mackey functor sends disjoint unions
to direct sums, it suffices to know how a Mackey functor behaves on the full
subcategory Og of Fg where O is the orbit category of G with orbits G/H as

its objects.

Definition 2.14. Let M be a Mackey functor and let K and H be subgroups of
G with K € H C G. Then, the restriction map Resk: M(G/H) — M(G/K) is
the image under M of the morphism represented by the span

G/H «+ G/K % G/K,

where G/K — G/H is the projection map. The transfer map Tril: M(G/K) —
M(G/H) is the image under M of the morphism represented by the span

G/K & G/K — G/H.

The Weyl group We(H) acts on M(G/H) as follows, where we think of
Wa(H) as the group of isomorphisms from G/H to itself in the category Og.
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Given an element v: G/H — G/H in the Weyl group Wg(H) and an element
r € M(G/H), we define v -z € M(G/H) to be the image of x under the mor-
phism M(G/H) — M(G/H) obtained by applying M to the morphism in %qg
represented by the span

G/H L G/H S G/H.

The Weyl group action on the levels of a Mackey functor is particularly useful as
we have a formula for the restriction of an element in the image of a transfer in

a Mackey functor in terms of this group action.

Proposition 2.15. Let H be a subgroup of G and let K be a normal subgroup of
H. Then, for each x € M(G/K) we have that

RestH(Tril (2 Z v T,

YEWK (H)

We now give two important examples of G-Mackey functors that will be used

extensively in later chapters.

Example 2.16. Let M be an abelian group. The constant Mackey functor M
associated to M is given by M(G/H) = M for all subgroups H of G. If K is a
subgroup of H, then the restriction map Resf: M — M is the identity map and
the transfer map Tri: M — M is multiplication by the index [H : K].

Example 2.17. Let M be a G-module. The fized point Mackey functor M
associated to M is given by M(G/H) = M for all subgroups H of G, where
M*" is the (abelian) group of elements of M fixed by the action of H. If K is a
subgroup of H, then the restriction map Resf: M — MX is the inclusion of
fixed points, noting that indeed if x € M is fixed by H then it is in particular
fixed by K C H. The transfer map Tri: M¥ — M is given by

Tri(x th

heH/K

which is independent of choice of representatives for cosets in H/K.

Notice that the constant Mackey functor associated to an abelian group is a
special case of a fixed point Mackey functor. Indeed, if M is an abelian group
then we can treat M as a G-module with trivial G-action. Then, the fixed point
Mackey functor associated to the G-module M is precisely the constant Mackey
functor associated to the abelian group M. Another important example is the

Burnside Mackey functor.



2.2. MACKEY AND GREEN FUNCTORS 13

Example 2.18. The Burnside Mackey functor A is defined by A,(G/H) =
B (G/G,G/H) for all subgroups H of G. Since we can ignore the left-hand map
in a span G/G < X — G/H, we can identify B4(G/G,G/H) as the group com-
pletion of the abelian monoid of isomorphism classes of finite G-sets over G/H,
i.e. equivariant maps from finite G-sets to G/ H, under disjoint union. If K and H
are subgroups of G with K C H, then the transfer map Tri : B¢(G/G,G/K) —
PBa(G/G,G/H) is given by composing maps X — G/K with the projection
G/K — G/H, and the restriction map Rest: B4(G/G,G/H) — Bc(G/G,G/K)
is given by taking the pullback of a map X — G/H along the projection G/K —
G/H.

Remark 2.19. Since the category of finite G-sets over G/H is equivalent to the
category of finite H-sets, we have that A (G/H) = A(H) where A(H) is the
Burnside ring of H, i.e. the group completion of the abelian monoid of isomor-
phism classes of finite H-sets under disjoint union with multiplication induced by
the product of finite H-sets.

We also have the notion of the inflation of a Mackey functor along a quotient
map, following the notation of [3, Definition 2.3|, as well as the notion of the

restriction of a Mackey functor to a subgroup.

Definition 2.20. If N is a normal subgroup of GG, then the quotient map ¢n: G —
G/N induces a functor ¢} : Mack(G/N) — Mack(G) where if M is a G/N-
Mackey functor then the G-Mackey functor ¢} (M) is defined by

. M(H/N) if NCH,
on(M)(G/H) = ,
0 otherwise.
Definition 2.21. Let M be a G-Mackey functor and H a subgroup of G. Then,

the restricted H-Mackey functor [& M is defined by
(i M)(T) = M(G xpu T)

for all finite H-sets T', where the finite G-set G x gT" is the quotient of G xT by the
relation (gh,t) ~ (g, ht) for all h € H, with G action given by left-multiplication

in the first component.

Although Proposition 2.15 gives us a formula for the restriction of a transfer
in a Mackey functor, we do not in general have a formula for the transfer of a

restriction.
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Definition 2.22. A Mackey functor M is called cohomological if for all subgroups
K and H of G with K C H, we have that

Trit(Resft(x)) = [H : K]
for every v € M(G/H).

As given by the following proposition, we have already seen examples of co-

homological Mackey functors.
Proposition 2.23. Fixzed point Mackey functors are cohomological.

Proof. Let M be a G-module, and let K and H be subgroups of G with K C H.
Given an arbitrary element » € M by definition we have that Rest(z) = =.

However, we also have by definition that

Tri(z) = Z h-x=[H:K|x
heH/K

as H acts trivially on x. O]

Our next goal is to define Green functors, which can be thought of as mul-
tiplicative analogues of Mackey functors, and to do this we first define the box
product of Mackey functors. Since we have defined the category Mack(G) of G-
Mackey functors as the functor category [%q, Ab] enriched over Ab, we can again

use the Day convolution to put a symmetric monoidal structure on Mack(G).

Definition 2.24. The boz product MUIN of two Mackey functors M and N is
defined to be the left Kan extension of the composite ® o (M x N) of the product
of the functors M and N with the tensor product of abelian groups, along the
direct product x of finite G-sets:

MxN

B x B Ab x Ab—2 Ab

Similar to Theorem 2.9, the Day convolution theorem implies that Mack(G)
under the box product is a closed symmetric monoidal category. The unit for the
box product is the Burnside Mackey functor A of Example 2.18. In particular, we
notice that a map (i.e. a natural transformation) MON — P of Mackey functors

is equivalent to maps

M(X)@NY) = P(X xY)
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which are natural in X and Y.

If we let cMack(G) denote the full subcategory of cohomological Mackey func-
tors, then cMack(G) is still a closed symmetric monoidal category as the box
product of two cohomological Mackey functors is cohomological. However, the
Burnside Mackey functor A is not cohomological so is not the unit in cMack(G),
and in fact the unit is the constant Mackey functor Z (see [13, Proposition 2.3.5]).

Definition 2.25. A Green functor is an abelian monoid in Mack(G) under the

box product [J of Mackey functors.

We will also give an equivalent yet more explicit definition of a Green functor
that will be useful in later chapters, and for this we need to understand the box

product from a more explicit viewpoint.

Definition 2.26. If M, N and P are Mackey functors, then a Dress pairing
¢: (M, N) — P consists of a collection of maps

pn: M(G/H)® N(G/H) — P(G/H)

for each subgroup H of G, which satisfy the following properties. The maps ¢y

are required to commute with the restriction maps so that the diagram

M(G/H)® N(G/H) —— P(G/H)

M(G/K) ® N(G/K) —"— P(G/K)

commutes. Furthermore, we require that the diagrams

M(G/K)® N(G/K) —"— P(G/K)

M(G/H) ® N(G/K) Trif

W\

M(G/H) ® N(G/H) —~— P(G/H)

and

M(G/K) @ N(G/K) —"— P(G/K)

M(G/K)® N(G/H) ri¢

%

M(G/H)® N(G/H) —~— P(G/H)
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commute. Element-wise, the commutativity of these diagrams means that
pr(a® Trg(b)) = Tri(px (Res (a) @ D))

and
wu(Trg(c) @ d) = Trig(px (c ® Resy(d))),

which is called Frobenius reciprocity.

The reason why we are interested in Dress pairings is that there is a close
relationship between maps out of the box product of Mackey functors and Dress
pairings. The following lemma is stated without proof in [12] and we sketch the

proof given in [11, Lemma 2.17].

Lemma 2.27. Given Mackey functors M, N and P, there is a one-to-one corre-
spondence between maps : MUN — P out of the box product of M and N and
Dress pairings ¢: (M, N) — P.

Proof Sketch. Suppose that we start with a map : MON — P. As discussed
earlier, this is equivalent to having maps M (X) @ N(Y) — P(X x Y) that are
natural in the finite G-sets X and Y. We define a Dress pairing ¢: (M, N) — P

as follows. For each subgroup H of GG, the above gives us a map
Yvg: M(G/H)® N(G/H) — P(G/H x G/H).

However, we also have a map f: P(G/H x G/H) — P(G/H) defined by the
image under P of the morphism in % given by the equivalence class of the span
G/H x G/H & G/H % G/H. Then, the collection of all ¢z := f oy defines
a Dress pairing.
For the other direction, suppose that we start with a Dress pairing ¢: (M, N) —

P, and let X and Y be arbitrary finite G-sets. Consider the maps f: M(X) —
M(X xY)and g: N(Y) - N(X xY) defined as the image under M and N of
the morphisms in % represented by the spans X ¢— X x Y X x Y and
V&2 XxY 4 XxY respectively. Taking their tensor product gives us a map

f®g M(X)@N(Y)— MX xY)®NX xY).

Now, we know that any finite G-set can be decomposed into a disjoint union of
orbits, so write

X xY =]]G/H..
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Since Mackey functors take disjoint unions of finite G-sets to direct sums of

abelian groups, it follows that

MXxY)@NXxY)=Ca® EB (G/Ho) @ N(G/H,)),

where C' consists of the crossed-terms obtained when we distributed the tensor

product over the direct sum. Thus, since the Dress pairing ¢ gives us maps
on,: M(G/H,) ® N(G/H,) — P(G/H,) for all o, we have a map

0@@ (G/H,) ® N(G/H,)) LD, @P G/H,) = P(X x Y).

By composing f ® g with this map, we obtain a map M(X)®@N(Y) - P(X xY)
that is natural in X and Y. O]

Using Lemma 2.27, it then follows that the box product of Mackey functors

has the following explicit inductively defined formula.

Proposition 2.28. Let M and N be Mackey functors. If H is a subgroup of G,
then (MON)(G/H) is given in terms of (MON)(G/K) for each subgroup K of
H as

(MON)(G/H) = M(G/H) ® N(G/H) ® (D) (MON)(G/K)/Wi(H))/FR,
K<H
with the evident transfer and restriction maps. Here FR s the Frobenius reci-

procity submodule and is generated by elements of the form
a® Trit(b) — Trit(Resii(a) ® b)

and
Trit(c) @ d — Tril(c ® Resti(d)).

Explicit computations of the box product when G = C, can be found in [9],
and see [10] and [12] for further discussion on the box product of Mackey functors.
As in Definition 2.25, we can now view a Green functor as an abelian monoid
under this explicit description of the box product given by Proposition 2.28. One
can show that we now have the following equivalent definition of a Green functor

that we will primarily use in later chapters.

Definition 2.29. A Green functor is a Mackey functor R such that R(G/H) is a

commutative ring for each subgroup H of G. Furthermore, we require that each
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restriction map Rest: R(G/H) — R(G/K) is a ring map, and that the transfer

maps satisfy Frobenius reciprocity, i.e. that
Tri(x) -y = Tri(« - Resy(y))
for all z € R(G/K) and y € R(G/H).

We will be primarily be working with Mackey and Green functors in the
context of the homotopy of G-spectra.

2.3 The homotopy of equivariant spectra

In this section we discuss how Mackey functors and Green functors are used in
equivariant stable homotopy theory. Non-equivariantly, we have the notion of the

homotopy groups 7, (X) of a spectrum X where n € Z. If n > 0, we define
T (X) = [E28", X],

i.e. the set of homotopy classes of maps from the suspension spectrum of the
n-sphere S™ to X. Note here that a non-equivariant spectrum is defined as in

Section 2.1 where we take G to be the trivial group e. If n < 0, we define
m(X) = [9", X]

where the spectrum S™ is defined by (5")y = _Z.(—n, k) and _Z, is the Mandell-
May category of Definition 2.2 associated to the trivial group. The direct sum

nez

of all the homotopy groups of the spectrum X is precisely the homology of a
point with respect to the generalised homology theory on the category of spectra
corresponding to X. If X is a ring spectrum, i.e. a spectrum together with an
associative and unital (up to homotopy) multiplication map p: X AX — X then
7.(X) is a Z-graded ring and is called the coefficient ring of X.

If we look at G-spectra for an arbitrary finite group G, then we get a collection
of homotopy G-Mackey functors. Furthermore, we can grade this collection of
homotopy Mackey functors over the orthogonal representation ring RO(G) rather

than just over Z as in the case of non-equivariant spectra.
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Definition 2.30. The orthogonal representation ring RO(G) is the group com-
pletion of the abelian monoid of isomorphism classes of finite-dimensional real
orthogonal G-representations under direct sum. The multiplication on RO(G) is

induced by the tensor product of orthogonal G-representations.

We will see examples of the ring RO(G) for the groups G = Cy and G =
Cy x Cy in Chapters 3 and 4 respectively. We now introduce the RO(G)-graded
homotopy Mackey functors 7, (X) of a G-spectrum X, noting that we use the
symbol ¥ for RO(G)-grading, the symbol * for integer grading and as usual an

underline for Mackey functors.

Definition 2.31. Let X be a G-spectrum. If V is a finite-dimensional real
orthogonal G-representation, then the V™ homotopy Mackey functor of X is
given by

my (X)(T) =[S AT®T, X]°

for all finite G-sets T', i.e. objects of the Burnside category %As. Here X°T, is
the suspension spectrum of the pointed G-set T, and SV is the representation
sphere (or one-point compactification) of V', and we are looking at the group of
equivariant maps from the G-spectrum SV A X°°T, to the G-spectrum X. If
V' is an n-dimensional trivial representation, then we denote the corresponding
homotopy Mackey functor by x, (X).

If [U] — [W] is a virtual G-representation giving an element of RO(G), where
U and W are actual orthogonal G-representations, then we have a G-spectrum

SU=W (which we call a virtual representation sphere) defined by
(S"" W = LW, U V)
for all objects V' in the Mandell-May category Zc.

Remark 2.32. It is a priori not clear whether the notion of the virtual rep-
resentation sphere is independent of choice of representatives for elements in
RO(G). However, this issue is resolved in [23, Theorem 1.6] so that indeed if
[U] — [W] = [U] — [W'] in RO(G), then we have an equivalence SV~ ~ gU'=W’

up to a canonical choice.

Using the notion of the virtual representation sphere, we can extend Definition
2.31 to virtual representations V = U — W € RO(G) by defining

my (X)(T) =[SV AN E*T}, X],
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where now SV A £°T, is the smash product of two G-spectra as in Definition
2.8. As discussed in Section 2.2, it suffices to consider m, (X) on the orbits G/H

for H a subgroup of GG, and for ease of notation we will write
my (X)(G/H) = mi} (X)),

which in this case is given by the H-fixed points [SY, X]. Given a subgroup
K C H, we have transfer and restriction maps Tri: 78(X) — 7 (X) and
Restt: i (X) — 7 (X) induced by the projection map G/K — G/H as in
Definition 2.14. Analogous to the fact mentioned earlier that if X is an ordinary
homotopy commutative ring spectrum then m,(X) is a commutative ring, we have

the following.

Theorem 2.33. If X is a homotopy commutative G-ring spectrum, then m, (X)
is an RO(G)-graded Green functor.

In particular, we have that the multiplication from the ring spectrum X in-
duces the box product of Mackey functors. Now, recall that non-equivariantly for
any abelian group A there is a corresponding Eilenberg-MacLane spectrum H A

with the defining property that its homotopy groups are given by

A ifn=0,
T (HA) =
0 otherwise.

If A is a ring, then HA is a ring spectrum. Furthermore, the spectrum HA
represents (in the sense of the Brown representability theorem) singular homology
and singular cohomology with coefficients in the abelian group A. We similarly
have an equivariant Eilenberg-MacLane spectrum when we replace the abelian
group A with a Mackey functor.

Theorem 2.34. If M is a Mackey functor, then there exists an Eilenberg-MacLane
G-spectrum HM with the property that

M ifn=0,
m,(HM) =
0  otherwise,

and HM is unique up to isomorphism in the homotopy category hoSp® of G-

spectra.

Proof. See [6, Theorem 5.3]. O
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Note here that the homotopy category hoSp® is obtained from the category
Sp© of G-spectra by inverting all weak equivalences, where a map X — Y in Sp®
is defined to be a weak equivalence if it induces an isomorphism 7 (X) — 7Z (V)
on all the integer graded homotopy groups for each subgroup H of G.

If M is a Green functor, then H M is a homotopy commutative ring spectrum.
Note that Theorem 2.34 only gives us the Z-graded homotopy Mackey functors
of HM, not the RO(G)-graded homotopy Mackey functors. Indeed, the main
problem of this thesis is in determining the RO(G)-graded homotopy Mackey
functors of the Eilenberg-MacLane G-spectrum HF; where G = Cy x €y and [y
is the constant Mackey functor associated to the field Fy with two elements as in
Example 2.16.

Furthermore, we have that the Eilenberg-MacLane G-spectrum HM repre-
sents Bredon homology and Bredon cohomology with coefficients in the Mackey
functor M. Just as singular homology and cohomology with coefficients in an
abelian group is easier to define for CW-complexes, we will define Bredon homol-

ogy and cohomology with coefficients in a Mackey functor for G-C'W complezes.
Definition 2.35. A G-CW complex is a CW-complex X with an action of G

that permutes cells of the same dimension and has equivariant attaching maps.
In particular, the set of n-cells of X forms a G-set which is a disjoint union of
orbits, i.e. the set of n-cells is a disjoint union of equivariant cells (or G-cells) of
the form G/H, A D" for H a subgroup of G where G acts trivially on the disk
D". A G-CW spectrum is the suspension spectrum of a G-CW complex.

The following is an important class of examples, and explicit G-CW structures

for these will be given in later chapters for the groups G = Cy and G = Cy x Cj.

Example 2.36. If V' is an actual G-representation, then the representation

sphere SV is a G-CW complex.

An important fact regarding G-CW complexes is that the Whitehead theorem

from non-equivariant homotopy theory generalises to the equivariant setting.

Theorem 2.37. If X and Y are G-CW complexes, then a G-map f: X — Y 1is
an equivariant homotopy equivalence if and only if the induced maps fH: XH —
YH on the fized-point spaces for all subgroups H of G are ordinary homotopy

equivalences.

Note that an equivariant homotopy equivalence as in the statement of The-
orem 2.37 is defined as a homotopy equivalence where all homotopies are G-

equivariant. The condition that a G-map f: X — Y induces an isomorphism
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on all the fixed-point spaces is precisely the condition for a morphism in 7% to
be a weak equivalence with respect to the Bredon model structure on T¢. This
is equivalent to the condition that f induces an isomorphism 72 (X) — 72 (Y)
on all the equivariant homotopy groups by the ordinary Whitehead theorem and
that by definition

(X)) = 7, (X)) and 72 (V) := 7w (V).

*

Hence, we can re-state Theorem 2.37 as a map of G-CW complexes is an equiv-
ariant equivalence if and only if it is a Bredon weak equivalence. We now return
to our goal of understanding the Bredon homology and cohomology of a G-CW
complex with coefficients in a Mackey functor, and for simplicity we will assume
that our G-CW complexes are of finite type, i.e. the set of n-cells for each n is a
finite G-set.

Definition 2.38. Let X be a G-CW complex and M an arbitrary Mackey functor.
Then, the Bredon chain complex C.(X; M) is a chain complex of Mackey functors
where the Mackey functor C,(X; M) is defined by

Co(X; M)(G/H) = M (G/H <11 G/Han) ,
where [ [, G/H,, is the G-set of n-cells in the G-CW complex X with the evident
transfer and restriction maps induced by the transfer and restriction maps in the
Mackey functor M. The Mackey functors forming the Bredon cochain complex
C*(X; M) are equal to the Mackey functors forming the Bredon chain complex
as above. The boundary and coboundary maps in the Bredon chain and cochain

complexes are induced by the cofiber sequence
Xn—l/Xn—2 — Xn/Xn—2 - Xn/Xn—l

as in the ordinary cellular chain and cochain complexes for the underlying CW-
complex X, where X* denotes the k-skeleton of X. The Bredon homology H,(X; M)
and Bredon cohomology H*(X; M) of X with coefficients in the Mackey functor
M is the homology and cohomology of the Bredon chain and cochain complexes

respectively.

We will be primarily interested in taking coefficients in the constant Mackey
functor Fy, and in this case (and indeed for the constant Mackey functor as-

sociated to any abelian group) the Bredon homology and cohomology Mackey
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functors can be alternatively calculated as follows. If X is a G-CW complex (or
more generally a G-CW spectrum), then the ordinary cellular chain complex of
the underlying CW-complex (with coefficients in Fs) is in fact a chain complex of
[Fy[G]-modules since the set of n-cells is a G-set. Each of these Fo[G]-modules has
a corresponding fixed-point Mackey functor as in Example 2.17, and we therefore
get a chain complex of Mackey functors whose boundary maps on each level of
our G-Mackey functors is induced by the cellular boundary map on the bottom
level. The Bredon homology H,(X;[F,) is then the homology of this chain com-
plex of fixed-point Mackey functors. The Bredon cohomology H*(X;F,) is the
homology of the chain complex of fixed-point Mackey functors corresponding to
the Fo-dual of the above cellular chain complex of Fy[G]-modules. We will see
examples of this calculation for the groups G = C5 and G = C5 x (5 in Chapters
3 and 4 respectively.

Furthermore, notice that the Bredon homology and cohomology Mackey func-
tors of a G-CW complex X with coefficients in Fy (or any constant Mackey func-
tor) are cohomological Mackey functors as they are given by the homology of a
chain complex of cohomological Mackey functors, recalling by Proposition 2.23
that fixed-point Mackey functors are cohomological. Since Bredon homology with
coefficients in an arbitrary Mackey functor M is represented by the equivariant

Eilenberg-MacLane spectrum H M, we have that
H,(X; M) = x (X ANHM).

Note that we can pass between Z-graded and RO(G)-graded homotopy Mackey
functors by smashing with (virtual) representation spheres and using the suspen-
sion isomorphism, for example if n € Z and V € RO(G) then

T (X ANHM) =, (SYAX ANHM).

In particular, as will be our focus in later chapters, in order to compute the
RO(G)-graded homotopy m, HF, it suffices to compute the Z-graded Bredon
homology H ,(SY;Fs) = m,(SV A HFs) of virtual representation spheres via chain

complexes of fixed-point Mackey functors.



Chapter 3

Cy-equivariant stable homotopy

theory

In this chapter we will focus on the group G = (5, and give a number of com-
putations that will be generalised to the non-cyclic group Cs x Cs in Chapter
4. In particular, we will compute the structure of m, HF, as an RO(Cs)-graded
Green functor, where HIFy is the Cs-equivariant Eilenberg-MacLane spectrum
corresponding to the constant Mackey functor F,. We also introduce the concept
of Anderson duality and explain why the additive structure of 7, HF; comes in

two symmetric pieces as seen in Figure 3.1.

3.1 The RO(C,)-graded homotopy Mackey func-

tors

Throughout this chapter we let G = C5 be the cyclic group of order two unless
stated otherwise. We will write Cy = {1,¢} so that ¢ denotes the non-trivial
element of Cy with t? = 1. Note that C5 has exactly two distinct one-dimensional
real irreducible representations, which we will denote by 1 and o. Here 1 is
the trivial one-dimensional representation (where Cy acts trivially on R) and o
denotes the sign representation whereby the non-trivial element ¢ of Cs acts on
R by sending a real number to its negative. Hence, we have that the orthogonal
representation ring of Definition 2.30 is given by RO(Cy) = Z{1,0}, which is
isomorphic to Z x 7Z as an abelian group. The regular representation of Cy is
given by
p=1+o0.

24
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The group G = (5 has only two subgroups, so if M is an arbitrary Co-Mackey

functor then we can depict M via the diagram

M(Cy/Cy)

|

M(Cy/e),

which is called a Lewis diagram, first introduced in [27]. In this section the Mackey
functors of interest will have only either an F5 or 0 at the top and bottom levels,

so the trivial Weyl group actions will not be drawn on our Cy-Mackey functors.

Example 3.1. The constant Mackey functor associated to 5 as in Example 2.16
has Lewis diagram
[y

)0
FQ:

and the dual of the constant Mackey functor has Lewis diagram

Fy= 1

[y

=

F,.

Notice that the transfer and restriction maps of the dual constant Mackey
functor are precisely the restriction and transfer maps of the constant Mackey
functor respectively. Rather than simply drawing the Lewis diagram for 3, we
make the following more general definition from which the definition of the dual

constant Mackey functor F3 follows.

Definition 3.2. Let M be a (3-Mackey functor with transfer and restriction
maps Tr? and Res$? respectively. Then, we define its Fy-dual (or simply dual)
to be the Cy-Mackey functor M* defined by M*(Cy/e) = Hom(M (Cy/e),Fy) and
M*(Cy/Cy) = Hom(M(Cy/Cy),Fy) with transfer and restriction maps (Tr&2)*
and (Res®?)* being the maps induced by ResS? and TrS? respectively.

Definition 3.2 extends easily to G-Mackey functors for any finite group G. The
following two Mackey functors will also show up in 7w, HF5, and we will name

these Mackey functors following [3, Section 3.1].
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Example 3.3. The geometric and free Mackey functors are given respectively
by

-

Notice that the geometric Mackey functor g is precisely the image of the
e-Mackey functor (or Cy/Cy-Mackey functor) Fy under the pullback of Mackey
functors ¢g, : Mack(Cy/Cs) — Mack(Cs) induced by the quotient map ¢¢, : Cy —
C5/C5 as in Definition 2.20. Furthermore, notice that g and f are self-dual in the
sense that g* = g and f* = f.

We are now ready to compute the additive structure 7, HIF5, and we first look
at m, (S”" A H&) =T (E”"H&) where n > 0.

Proposition 3.4. The non-zero homotopy Mackey functors of X" HFy forn > 0

are given by
Fy of k=n,

m, (X" HF,) =
7 £y) g ifke0,n—1].

Proof. Fix n > 0. As discussed in Chapter 2, we know that 7, (5" A HF;) =
H, (5™ F,y), and the Bredon homology may be computed via a chain complex of
fixed-point Mackey functors. To do this, we first put an explicit Co-CW structure
on the (actual) representation sphere S™. We see that S™ has two equivariant
0-cells indexed by Cy/C5, and a single equivariant k-cell indexed by Cy /e for each
1 <k < n. The (reduced) cellular chain complex computing H,(S™";Fy)(Cs/e),
which is isomorphic to the singular homology with Fs-coefficients H,.(S™;Fs) of
the underlying sphere S™, is given by

Fy[Co/Cs) <= Fa[Co/e] ¢ FoCh/e] 425 -+ - &2 Fo[Cy/e]

concentrated in degrees inside the interval [0, n]. Taking Cs-fixed points, we then

get the chain complex of Mackey functors

Fpe—2t— Fp— F—2 ... T,

Fs[Co/Ch) <—Y— Ty [Ch Je] <y [Ca fe] < -+ - < Ty [ Je].
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Taking homology, we get the homotopy Mackey functors

F, Fy Fo e Fo
o0
0 0 0 e Fo

in degrees 0 through n. O]

It is useful (for example when discussing the slice spectral sequence) to re-
write the result of Proposition 3.4 in terms of the homotopy Mackey functors of
suspensions of HIFy by multiples of the regular representation, which we do by

taking the trivial suspension n times.

Corollary 3.5. The non-zero homotopy Mackey functors of X" HIFy for n > 0

are given by

Fy iof k=2n,

Tk, (anH]Fz) == /
o g ifken2n-1].

We now look at suspensions of HF, by negative multiples of o (or negative
multiples of the regular representation p). We will see later how we can alterna-

tively compute m, (E*”"H &) where n > 1 using Anderson duality.

Proposition 3.6. The non-zero homotopy Mackey functors of X" HFy forn >

2 are given by

F5 of k= —n,

T (E—nUHIF2> — -2 f
o g ifkel-n+1,-2].

When n =1 the only non-zero homotopy Mackey functor is f in degree —1.

Proof. Since S~ is the Spanier-Whitehead dual (see [1, Section 2.2.1]) of S, we
have as discussed in Chapter 2 that the chain complex computing H,(S™"7;Fy)(Cs/e)
is the Fo-dual of the chain complex from the proof of Proposition 3.4, namely the

chain complex
Fy[Cy/Cs) = FolCh/e] 25 FolCh/e] L5 - oo L Fo[C fe]

concentrated in degrees inside the interval [—n,0]. Taking Cs-fixed points, we

then get the chain complex of Mackey functors

Fp—————>F— >F—2 ... .,

o)) |

Fs[Co/Cs) —2—TFs[Ch Je] — s Fy[Ca fe] — s - - - — o Ty [ Je].
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The homology of this chain complex is given (in the case that n > 2) by

000

However, when n = 1 we are just left with

i

]

Analogous to Corollary 3.5, we may desuspend n times in order to re-write the
result of Proposition 3.6 in terms of suspensions of HF; via negative multiples of

the regular representation.

Corollary 3.7. The non-zero homotopy Mackey functors of X~"PHIFy for n > 2
are given by

(Z_””HF ) F5 iof k= —2n,
s 2) = 9§
’ = g ifkel-2n+1,-n—2

When n =1 the only non-zero homotopy Mackey functor is f in degree —n — 1.

3.2 Anderson duality

We introduce equivariant Anderson duality in the context of giving an alternative
argument to deduce the homotopy Mackey functors given in Proposition 3.6. We

observe the following twisting.
Proposition 3.8. As Cy-spectra, we have that E“H& ~ Y2 HF3.

Proof. Tt suffices to show that X4 * HF, ~ HIF;, and to do this we will show
that both spectra have the same homotopy Mackey functors. We see that
Zk(24_2pHF_2) = Ek(ZQ_zaH&)
— 1 ,(SVHE,).
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However, by Proposition 3.6 we know that

Fy ifk—2=—2,
Ty o (E_QUHIFQ) — -2
T 0 otherwise.

Hence, we have that

F5 if k=0,
Ek(24_2pH]F_2) =
0  otherwise,

which is precisely m;, (HF3). Hence, we must have that ¥*"*?HFy ~ HF; by the

uniqueness of Eilenberg-MacLane spectra as in Theorem 2.34. O

In the following discussion, we can take G to be an arbitrary finite group.
Consider the category HFy-mod of HIFy-modules, where here IFy is the constant

G-Mackey functor associated to Fo. Then, we have a contravariant functor
Iy, : (HFy-mod)® — HFy-mod

called Anderson duality, where if X is an HIFy-module then the homotopy Mackey

functors of its Anderson dual Iy, X are given by
Ty I, X = (E—VX)*

for V€ RO(G). Note that on the right-hand side we are taking the Fy-dual of
the Mackey functor m_y, X as in Definition 3.2.

Proposition 3.9. Let M be an Fy-module. Then, we have that Iy, HM = HM".
That is, for every V € RO(G) we have that

my (HM") = (n_y HM)".
Proof. See [3, Proposition 2.9]. ]

More detailed discussion on Anderson duality can be found in [7] and [16].
Note that in particular Proposition 3.9 implies that Iy, HFy = HFj. Using this,

we give an alternative proof of Proposition 3.6 (in the case that n > 2).

Proof of Proposition 3.6. Let n > 2 and k € Z be arbitrary. We want to compute
T (X7 HFy) = 4y (HF3). However, by Proposition 3.9 we have that

(Ek+naHF_2)* = T k—no (HB)
ﬂ—k(ZMHB)
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But by Proposition 3.8, we know that ¥*77 HFy ~ HF;. That is,

E—k(EmHIF_;) = E—k(22+(n_2)aHF2)

Hence, we have shown that
T (X7 HE) = (E—k—z(z(n_z)afnﬁ))*a
and the result now follows after noticing that g* = g. O

The Mackey functor homotopy of HF, that we have now computed is depicted

in Figure 3.1 below. In particular, our above discussion of Anderson duality

Figure 3.1: m, (X" HF,)

I

nTB 9 9 g | Fo
2 g | 9 |F
1 g | Fy
0 Fy
Vi \
\ 4
-1 S
9 F3
-3 19
-4 F;| 9|9
5| F 9|94
~
5 4 3 2 -1 0 1 2 3
7

explains the evident symmetry between the first and third quadrants (if we ignore

the free Mackey functor f which in any case is zero at the Cy/C5 level).



3.3. THE RING STRUCTURE OF THE RO(Cy)-GRADED HOMOTOPY 31

3.3 The ring structure of the RO(C,)-graded ho-
motopy

Since HF, is a commutative ring spectrum, we know by Theorem 2.33 that
T, HF; is an RO(Cs)-graded Green functor. That is, we can write 7, HIFy as a
single Mackey functor where both 7, HIFy(C5/C5) and m, HF5(Cy/e) are commu-
tative RO(Cy)-graded rings, the restriction map is a ring map and the transfer
map satisfies Frobenius reciprocity. Our goal in this section is to compute these
ring structures explicitly.

We begin by computing the ring structure of the top level m, HFy(Cy/C5),
which as mentioned in Chapter 2 we will re-write as 7r§2 HT,. If we focus on the
top levels of the Mackey functors in Figure 3.1, then we say that the non-zero
elements in the first quadrant form the positive cone, and non-zero elements in

the third quadrant form the negative cone. Now, let
x € 757(S° A HFy) and y € 772(S° A HFy)

be the generators of the two copies of Fy in 72(S7 A HF3) at degrees 0 and 1
respectively. Then, we claim that the positive cone is polynomial in z and y.

Note that for example in [8] these two elements are named p and 7 respectively.

Theorem 3.10. The positive cone in WS,?HIF_Q 15 given by the graded polynomaial

ring Faolx,y|, where the elements x and y are defined as above.

Proof. Given that we already know the additive structure of ﬂi"’ HF, from Section
3.1, it suffices to show that if 2z generates a copy of 5 in the positive cone, then
both zz and zy are non-zero i.e. that they also generate copies of Fy in the
positive cone. So, let n > 1 be arbitrary and suppose that z is the generator of
W,?Q(S"U A HTFy) for some 0 < k < n. The following diagram shows the top row of
the chain complex of Mackey functors (as constructed in the proof of Proposition
3.4) computing 75> (5" A HFy) as well as the class 2:

4
[ J [ ] [ ] [ ] [ J [ J ®

Here each e represents a copy of Fo, and no differentials are drawn as they are

all zero. Now, the ring multiplication in the positive cone is induced by
w 2SN HFg) @ w2 (S™7 A HFy) — w2, (ST A HEF,)

whereby we take the tensor product of the Fy[Cy]-modules forming the Cy/e

levels of the chain complexes of Mackey functors computing 7;(S™ A HF) and
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Ej(S”/” N HTF;) and then take Co-fixed points. We want to multiply z by « and by
y, so we will be tensoring with the chain complex computing m,(S7 A HF;) (i.e.
we take n’ = 1). Focusing on the top level of our Mackey functors (i.e. taking

Cy-fixed points of the tensor product), we obtain the following double complex:

zZr
([ ] [ [ ] [ ([ ] [ ] ([ ]

[ N N A

([ ] [ 1 v (1] [ 1 (1] ce [ 1 J (1]
zY

Here each ee represents a copy of Fz, which is the Cs-fixed points of the Fy-
module Fy[Cy/e x Cy/e]. Note that we have an explicit decomposition of the
product Cy/e x Cy /e into two free transitive Cy-orbits Cy/elICy /e as follows. For
ease of notation, we write elements in Cy/e x Cs /e as z;; = (2;,2;) for 0 <i,j <1
where zp = 1 and z; = ¢. Then, the two free transitive Cs-orbits are {2z, 211}
and {z10, 201 }. Also, note that each single e in the above diagram is the Cs-fixed
points of the Fo[Cs]-module Fo[Cy/e x Cy/Cs] = Fy[Cy/e], except at degree 0
which is the Co-fixed points of Fy[Cy/Cy).

Furthermore, each differential ee — e in the above double complex is the

1

co-diagonal map V, and each differential ee — ee is given by the matrix [1 1}.

To see this, since we are taking the tensor product we know that each differential
FQ[CQ/G X 02/6]02 — FQ[Cz/e X 02/02]02

is given by applying the map id X (2 — 1,23 — 1) and taking Cy-fixed points.
So, applying this map to each of our four basis elements {zgo, 211} U {210, 201} of
Fy[Cy/e x Cy/e], we see that

200 > 20, Z10 77 21,

211 > z1, 201 > 20-
Thus, after taking Cs-fixed points we see that the two basis elements zgg+ 217 and

210+ 201 of Fo[Cy /e x Cy/e]“? map to 2+ 21, so indeed we obtain the co-diagonal

map V. Similarly, each differential
FQ[CQ/@ X 02/6]02 — FQ[CQ/@ X 02/6]02

is given by applying the map (1 + ¢) x id and taking Cy-fixed points. Applying

this map to each of our four basis elements of Fy[Cy/e x Cy/e], we see that

Zoo F 200 t+ 210, Z10 = 210 t+ 200,

Z11 &> 211 + Zo1, Zp1 > Zo1 t+ 211-
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Therefore, after taking Cs-fixed points we see that each of the two basis elements
200 + 211 and 219 + zo1 of Fy[Cy/e x Cy/e]®? map to the sum of the two basis
elements of Fy[Cy/e x Cy/e]¢?, so indeed we are left with the matrix [1 1}

It remains to show that the elements in the double complex representing
zx and zy are non-zero in homology. To do this, first suppose that £ > 1.
Then, as indicated on the diagram of our double complex above, the product
zx is represented by the sum zp + 21 € Fy[Cy/e x Cy/C5]%? =2 Fy[Cy/e]“? as 2
is represented by zg + 21 € F3[Cs/€]“? in our original chain complex computing
T2 (S A HFy), and © € 752(S7 A HFy) is represented by 1 € Fy[Cy/Cy)%.
However, we have that y € 7{>(S% A HF,) is represented by 2o+ 2 € Fo[Ch/e]2,
so the product zy is represented by zgo + 211 + 210 + 201 € Fa[Co/e x Co /€], i.e.
by the sum of the two basis elements of Fo[Cy/e x Cy/e].

Therefore, we have that both zx and zy are in the kernel of the total differential
of the double complex (which is defined to be the sum of the horizontal and
vertical differentials), and thus they are homology classes. However, even though
both zx and zy are in the image of either a horizontal or vertical differential
(unless £ = n in which case zy is not in the image of a horizontal or vertical
differential), they are not in the image of the total differential so they are non-
zero homology classes.

Note that if & = 0, then zy is represented by zy + 21 € F3[Cy/e x Cy/C5]¢? =2
Fy[Cy/e]®? which is still in the kernel and not in the image of the total differential,
and zz is represented by 1 € Fy[Cy/Cy x Cy/C5]®? and is in the kernel of the
total differential and in particular not in the image of the horizontal or vertical

differentials as depicted on our earlier diagram of this double complex. O

Now that we understand the positive cone, we turn to the negative cone in
m$2 HF,. Since the free Mackey functor f has f(Cy/C3) = 0 (as in Example 3.3),
we see from Figure 3.1 that the smallest positive n such that 72(S™" A HF,)
has a non-zero class is n = 2. The homotopy 7¢2(S727 A HF) is concentrated in

degree —2 and we let
0 € 79%(S7% A HF,)

be the generator of the single copy of Fy in this degree. We claim that this class

0 is ‘infinitely divisible’ by x and y in the sense of the following theorem.

Theorem 3.11. The negative cone in 7r *HIFy is given by (Mx 4] {0} with the
class 0 defined as above. That is, any non-zero class in the negatwe cone 1s

represented by some element % e 2l L0V in the sense that we get back the

xOOOO
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class 0 after multiplying by the class x'y’ in the positive cone, and we get zero

when we multiply by any class in the positive cone that does not divide x'y’ .

Proof. Again, we know the additive structure of WiQH& from Section 3.1, so it
suffices to show that if z generates a copy of Fy in the negative cone, then zx
and zy are non-zero unless they are forced to be zero by degree reasons (i.e. if
multiplying by x or y pushes us into a degree whose corresponding homotopy
group is zero). So, let n > 3 be arbitrary, and suppose that z is the generator of
7T]§2<S_7w A HIFy) for some —n < k < —2. Note that we ignore the case n = 2 as
Oz = 0y = 0 by degree reasons. Now, the following diagram shows the top row
of the chain complex of fixed-point Mackey functors computing 752(S~"" A H Fy)
together with the class z:

Again each e represents a copy of F and an arrow is drawn in the chain complex
if and only if the corresponding differential is zero. As in the proof of Theorem
3.10, we now want to tensor with the chain complex computing 7¢2(S7 A HF5)

which results in the following double complex:

zx

N 0 N O O O

2y

All the horizontal and vertical differentials in this double complex were computed
in the proof of Theorem 3.10 except for the differential @ — ee which we claim is

the diagonal map A. Indeed, this horizontal differential
FQ[CQ/CQ X 02/6]02 — FQ[OQ/@ X 02/6]02

is given by applying the map (1 — 29+ 21) x id and taking Cy-fixed points, noting
that we use the same notation as in the proof of Theorem 3.10. Now, applying
this map to the basis {29, 21} of F3[Cy/€], we see that

20— 200 + 210 and 21 = 21 + 211.

Hence, after taking C5-fixed points we get that the basis element 2y + 2; of
Fy[Cy/e]“? maps to the diagonal element zgo + 211 + 210 + 201 of Fo[Cy/e x Co/€]¢?,

so this horizontal differential is indeed the diagonal map.
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Now, as in the proof of Theorem 3.10 we have that zx is represented by
20+ 21 € Fo[Cy/e x Oy /0] 22 Fy[Cy/e]? and zy is represented by the diagonal
element 2y + 211 + 210 + 201 € F2[Cy/e x Cy/e]?, so both zz and zy are in the
kernel of the total differential, i.e. are indeed homology classes. Suppose first that
—n < k < —2. By the same argument as in the proof of Theorem 3.10, we have
that both zz and zy are not in the image of the total differential (even though
they are in the image of the vertical and horizontal differential respectively) so
therefore represent non-zero classes in homology. This same argument works if
k = —n and we are looking at zy, or if k = —2 and we are looking at zzx.

However, if Kk = —n then by degree reasons we know that zx is zero in ho-
mology, which can also be seen by looking at the above double complex as it is
indeed in the image of the total differential. If £ = —2, then again by degree
reasons we know that zy is zero in homology, which can also be seen in the above
double complex as it is homologous to a class which is in the image of the total
differential. O

Figure 3.2 below depicts the top levels of the Mackey functors in Figure 3.1
and what we know at this point about the ring structure of 71'22[‘[&, whilst
highlighting the duality between the positive and negative cones.

However, in order to complete our understanding of the ring structure of
7T§2 HF,, we need to know what happens when we multiply two elements in the

negative cone.
Proposition 3.12. The product of any two elements in the negative cone of
7T§2 HTy 1s zero.

[
xiyd

Proof. Consider two arbitrary elements and # in the negative cone where

i,4,k, £ > 0. Then, we want to show that -2 - =& = 0. To see this, suppose for

ziyd  xky
the sake of a contradiction that this product is non-zero. By our description of

the negative cone as seen in Figure 3.2, we have that

0 -
e 7% (ST A [Ty

ZL‘iy] —2—j

and

0
ot € 79 (ST EDT A [Ty,

Therefore, since we assume that their product is non-zero, we have that

o 6 8 o
syl gyl T githyire € T o (j4+4+2)

(S(—2—(i+k+j+€+2))a A H&)



36 CHAPTER 3. Cy-EQUIVARIANT STABLE HOMOTOPY THEORY

Figure 3.2: 7 2(S" A HFy)

Iz
nT 3 23 :ch U,L.yQ y3
2 22 | Ty | y?
1 x Y
0 1
4 \
'\ 4
-1
-2 0
(4 9
-3 y ¢
4 7| |
~
5 4 3 -2 -1 0 1 2 3
—
k
Now, by Theorem 3.11 we know that
0 o
_ oplgd — k ¢
e_ziyj ry xkyt Yy
and hence by our above assumption we have that
0 0 .
0 = — . —— - zlyiahyt
xlyj l.k:yf Y Y
_ L itk j+L
o githyi+t+2
0
Y2
However, we have that
0 0
y? y

is non-zero, but
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as Ay = 0 for degree reasons, so we have indeed reached a contradiction. O]

Now that we have derived the complete ring structure of 7T§2 HF,, the RO(Cs)-
graded Green functor structure of 7, HIF; is a corollary. In what follows, we refer
to the positive and negative cones of 7, HF; to be the first and third (minus the
free Mackey functor f = 7 ,(X77HF;)) quadrants respectively of Figure 3.1, i.e.
these terms now refer to the whole Mackey functors, not just the top levels of the

Mackey functors.

Corollary 3.13. The positive cone in wy HF, is given by the Mackey functor of
RO(Cy)-graded rings

Folz, y]/(2),

where m: Fylz, y] — Folx, y]/(x) is the quotient ring map.

Proof. Let n > 0 be arbitrary. Then, by Theorem 3.10 we know that the homol-
ogy of the chain complex of fixed-point Mackey functors computing r, (X" HF,)

as constructed in the proof of Proposition 3.4 is given by

(I T
: 0 0 o Fa{ResC(y"),

where here the notation Fo{a} means a copy of Fy generated by a, and we identify

ReseCQ (y™) with y™ as the restriction map in degree n is the identity map. O]

Remark 3.14. The Mackey functor given in the statement of Corollary 3.13 is
an RO(Cy)-graded Green functor, noting that Frobenius reciprocity is of course
satisfied as the transfer map is zero. A similar remark holds for Corollary 3.15
below.

We now look at the negative cone of m, HIF,, and focus on the subring
]ngy

{9} of m$? HF,, where we recall that this subring has trivial multiplication.

Con81der the map
Folz, y] Falz, y]
e U B en (4
(>0, y*) (%0, )
given by multiplication by x. The kernel of this map can be thought of as the
Fy-linear span of the collection of all §/y" for i > 0 inside ;Ffjx?jl {0}, and we

denote the kernel by ker(x).
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Corollary 3.15. The negative cone in wy, HFy is given by the Mackey functor of
RO(Cs)-graded rings
ezl o)

o( ji

22U (0) O ker (x),

(z>0yy
where 1: ;Fflxy {0} Nker(z) — (;Ffjw Y10} is the inclusion map.

Proof. Let n > 2 be arbitrary. Then, by Theorem 3.11 we have that the homology
of the chain complex of fixed-point Mackey functors computing 7, (X" HF,) as

constructed in the first proof of Proposition 3.6 is given by

<0> (0> Fo{ =2} FQ{ﬁ} ]F2{yJL72}
0 0 (oj (oj Fa{ =2},

where we are identifying the generator of the IF5 at the bottom level of the Mackey
functor in degree —n with 6/y" 2 as the transfer map is the identity. m



Chapter 4

The Klein four homology of a

point

In this chapter we discuss the structure of the Green functor m, HIF; for the
group G = Cy x (5. In particular, we look at the ring structure of the top level
7T§H Fy (which can be thought of as the G-equivariant homology of a point), and
we give a complete algebraic description of the whole Mackey functor structure
of T, HF,5. The additive structure of the top level 7§ HF, is computed in [2]
in the form of Poincaré series for the dimensions of the corresponding Fs-vector
spaces, and we show how to derive these Poincaré series by constructing explicit
G-CW structures on G-representation spheres and iteratively using the spectral
sequence of a double complex. This method can also be used to derive WEH Z,
and we discuss this in Section 4.8 as well as how we can instead use the Bockstein

spectral sequence to compute the homology with integer coefficients.

4.1 (Cy x (y)-Mackey functors and representa-

tions

Throughout this section, and indeed throughout this chapter, we let G = Cy x Cy
with presentation
G = (t1,t2 |65 =15 = (t1t2)> = 1),

and we let t3 = t1t5. We can think of the identity element in Cy x Cy as (1,1), ¢
as (t,1), t2 as (1,t) and t3 as (,t), with Cy x Cy = {1,¢} x {1,¢} following the
notation of Chapter 3. The Klein four group has three non-trivial Cy-subgroups
generated by t;, to and t3 respectively, and we let Hy = (t;), Hy = (t2) and

39
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Hj3 = (t3). Given these notational conventions, if M is a G-Mackey functor then

we will depict M by the Lewis diagram

M(G/G)

Note that the Weyl group actions are not drawn on the above diagram as for
the most part these actions will be trivial for the Mackey functors we will be
considering, where the values of the Mackey functors on each orbit space will
be Fy-vector spaces. In particular, the Weyl group actions are trivial for the
homotopy Mackey functors in 7, HF,. Furthermore, we will not draw any transfer
or restriction maps on our Mackey functors that are zero, so if an arrow Fy — Fy

is drawn on a Mackey functor then we know that it represents the identity map.

Example 4.1. The Lewis diagrams for the constant Mackey functor associated

to IFy and its dual are given by

FQ FQ

]FQ = ]F2 ]FQ ]FQ and F; = ]FQ ]FQ

/ N

F, F.

Iy

In particular, all restriction maps are the identity and all transfer maps are zero
in the Mackey functor Fy, and the reverse is true for the Mackey functor F5.
The definition of the dual constant Mackey functor also follows Definition 3.2 for
(Cy x Cy)-Mackey functors.

As an abelian group, we have that RO(G) = Z*. In particular, Cy x Cy has
precisely three distinct non-trivial one-dimensional real representations, which we

will call o, 05 and o3 so that the regular representation is given by

p=1+01+02+03.
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More specifically, let ip,, iy, and iy, denote the inclusions of the Cy-subgroups
H,, Hy, and Hj into G respectively. Then, by pre-composing representations
of G with these three inclusions, we obtain three induced maps i3, : RO(G) —
RO(H,), i}, RO(G) — RO(H;) and i}, : RO(G) — RO(Hs). Letting o be the
sign representation of Cy, the distinct irreducible representations oy, o9 and o3

satisfy

iy, (01) = 1, i, (02) = 0 and iy, (03) = 0,
iy, (01) = 0, iy, (02) = 1 and iy, (03) = 0,

iy, (01) = 0, i, (02) = 0 and i}, (03) = 1.

That is, the one-dimensional real representation oy is defined by H; acting triv-
ially on R with t, and t3 acting non-trivially, and o5 and o3 are defined similarly

where H, acts trivially and Hs acts trivially respectively.

4.2 A trigraded complex of Mackey functors

In this section, we will construct for each (p,q,r) € Z* a triple complex of
Mackey functors whose homology is precisely m,(¥P717972%773 [Fy). First, let
p > 0 be arbitrary and consider the actual representation sphere SP?'. This rep-
resentation sphere has an explicit G-CW structure consisting of two equivariant
O-cells indexed by G/G, and a single equivariant k-cell indexed by G/H; for each
1 < k < p. Then, similar to the proof of Proposition 3.4, the (reduced) cellular
chain complex computing the homology H,(SP7';F,)(G/e) is given by

Fs|G/G] < oG/ Hy] <22 Fo|G/Hy] <22 ... &2 |G/ H, ).

Note that we have written these differentials in terms of the representative t5 of
the non-trivial coset in G/ Hy, but we could have instead chosen the representative
t3 so that the differentials can be written as multiplication by 1 + ¢3. By taking
H,, Hy, Hs and G-fixed points, we obtain a (singly-graded) chain complex of
Mackey functors whose homology is precisely m,(S?"* A HF,). The G/e, G/H,
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and G/G levels of this chain complex of Mackey functors is given by

F, . F, . L i
Fo[G /G ~Y— Ty |G/ Hy] <2 Fy |G/ Hy| <2 ... <2 Ry [G/ Hy]

o 0 e

Fo[G /G ~Y—TFo[G/Hy| <2 Fy |G/ Hy| <2 ... 2 T, [G/H]).

Looking instead at the G/ H, level (as well as again the G//e and G/G levels), we

have

F, - F - Fpe—t—- 2T,
I
Fo[G /G ~—Y—TFo[G/Hy| <2 Fy G/ Hy | <2 ... 2 F,[G/H,).

Note that the chain complex looking at the G /e, G/Hj and G /G levels is identical

to the above. Computing homology, we therefore see that

Iy

I\

Ek(Spal AN H]F_Q) = 0 ]FQ FQ

for each 0 < k <p—1, and zp(Sp‘” A HIFy) is the constant Mackey functor F,.
Now, if p > 0 then as in Chapter 3 in order to compute 7, (S~ AHF;) we dualise
the reduced cellular chain complex computing H,(S?7';F;)(G/e) and then take
fixed points under the various subgroups of G to give us a dual chain complex of
Mackey functors. The G/e, G/H, and G/G levels of this chain complex is given
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by
Fy - Fy 2 Fy—2 . — % Ty
Fy[G/G) —2>FoG/Hy) — 2= Fo G/ Hy ] — 2 - - . 2 Fy[G/ H|
Fy[G/G] —2=TFo[G/H\]| — 25 By G/ H | —2- ... 2 T, [G/ H,

and looking at either the G/H, or G/Hj levels (as well as the G/e and G/G
levels) we have

Fy ! Fy s Fy—L s — T,
oo
Fy[G/G] —2=TFo[G/Hi | — 22 Fy G/ H | —2- ... 2 T, [G/H .

Taking homology (and assuming for the moment that p > 1), we therefore see

that the non-zero homotopy Mackey functors are given by

¥y
Ek(s_pal VAN H]F_Q) = 0 F2 FQ
0
for each —p+1 < k < -2 and
¥y

n(SPUAHE) = T
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If p =1, then the only non-zero homotopy Mackey functor is

7 (S~ A HFy) = F, 0 0

N

Fs.

Notice in particular for every p € Z we have that
T (SP7 A HFy) 22 707 (SP7 A HTFy),

where on the right-hand side we are looking at the Cy-Mackey functor homo-
topy of HF, where [y is the constant Cy-Mackey functor. That is, by looking
at 7¢(SP7t A HF3) we have a copy of the calculation of W%H& from Chap-
ter 3. Moreover, using the notation from Definition 2.21 we see that the re-
stricted H;-Mackey functor ¢g1 7, (SP7 A\ HIFy) is precisely the Co-Mackey func-
tor m,,(SP A HF3), and both |, m, (5Pt A HF,) and |G, 7, (SP7' A HF3) are equal
to the Cy-Mackey functor 7, (SP” A HF,).

This phenomenon holds more generally due to the relation between the irre-

ducible representations of Cs x Cy and Cy discussed in Section 4.1, whereby
i, mp(SPortaztros A HEy) = 7, (SPHT7 A HIF),

and similarly we are left with the Cy-Mackey functors m, (ST ®+"7 A HF,) and
7, (STHPTDT A HFy) if we restrict to the Cy-subgroups Hy and Hj respectively.
Note that the above discussion about m, (¥7?* HF;) is symmetric if we want
to instead look at either m, (2972 HF) or m,(X"7* HF,). Now, given (p,q,r) € Z°,
our trigraded complex of Mackey functors computing x, (377 4724773 T, ) will be
obtained by taking the tensor product of the G/e levels of the above singly graded
chain complexes of Mackey functors computing m, (377 HF,), 7, (3972 HFFy) and
7, (X773 HFy) and then taking fixed points. For p,q,7 > 0, this resulting triple
complex can be viewed as the reduced cellular chain complex corresponding to
the product G-CW structure on SPo11992+793 — Gpo1 A G492 A G793 ith respect
to our above G-CW structures on the actual representation spheres SP7', S92
and S7?3. Since we are looking at the reduced cellular chain complexes, we may

ignore the second 0-cells in each of these three G-CW structures and thus we can
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visualise the product G-CW structure on SP71+4921793 45 follows:

G/Hj GJe GJe
] ] e
Gle | 2G /e 2G /e
G/Hj GJe GJe
] ] e
GJe ‘ 2G /e ‘ 2G /e
G/G G/H, G/H,
~ / /
G/H, GJe GJe

Note we are using here that, as G-sets,
G/H; xG/H; = GJe
for each i, 7 € {1,2,3} with ¢ # j, and that
G/H, x G/Hy x G/H3 =2 G/eUG/e.
Furthermore, notice that
G/H; x G/H; =2 G/H; UG/H;

for each ¢ € {1,2,3} as in Chapter 3, thinking of G/H; as a copy of Cy/e. Now,
each Mackey functor in our triple complex is the fixed-point Mackey functor cor-
responding to one of the Fy[G]-modules Fy[G/G], F3 |G/ Hy|, Fo|G/ H,|, Fo| G/ Hs),
Fy[G/e] or Fo[2G/e]. For p,q,r > 0 our triple complex of Mackey functors looks
as follows (in particular when p = r = 2 and ¢ = 1). The fixed-point Mackey

functors that these symbols represent are described explicitly below.

> = =
E/‘ I/‘ ]

| |

| — | —
E/‘ I/‘ |

| |

S| 0~ | —©

/! /! /

* =] =]
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We know from before that < is the constant Mackey functor Fy. Furthermore,
we saw that the fixed-point Mackey functor corresponding to Fy[G/H] is given
by

IFy

F3

and the fixed-point Mackey functors @ and <» corresponding to Fy[G/Hs] and
[Fo|G/ H3] are symmetric where the two copies of F3 now appear at the G /e and
G/H, or the G /e and G/ Hj3 levels respectively. The fixed-point Mackey functors
corresponding to the Fy[G]-modules F5[G/e] and F5[2G /€] are more complicated.
First, note that our trigraded complex of Mackey functors includes the fixed-
point Mackey functor corresponding to the Fo[G]-module Fy[G/e] in the form of
Fy|G/Hy x G/Hs), Fo|G/H, x G/ Hs] and Fo[G/Hy x G/ Hs]. However, as in the
above diagram of our triple complex we have named each of these three Mackey
functors i, and the reason for this is that we can choose bases for the three 5 [G]-
modules such that the three resulting fixed-point Mackey functors are equal.

We first look at the fixed-point Mackey functor associated to Fo[G/Hy x G/ Hs].
Similar to the proof of Theorem 3.10, for ease of notation we will write elements
in Fy|G/Hy x G/H,] as u;; = (a;,b;) for 0 <4,j <1, where ag = Hy, a; = toHy,
by = Hs and by = t1Hy. Then, we use the ordered basis {uqg, 119, uo1, w11} for
Fo|G/Hy x G/Hs). In this basis, the corresponding fixed-point Mackey functor is
given by

Fo{ugo + w10 + w01 + u11}

A v
A v
v A
Fo{uogo + w01, w10 + w11} Fo{upo + w10, w01 + w11} Fo{uoo + w11, u10 + w01}
AT C
B BT

Fa{uoo, w10, w01, w11 }-
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Here the matrices A, B and C are given by

and C =

S = O =
O O = =
= = O O
_ o O =
O = = O

Similarly, if we write elements in Fo[G/Hy x G/ Hs] as v;; = (a;, ¢;) for 0 < i,k <1
where ¢y = Hjz and ¢, = t1H3 = toH;3 and use the basis {vg, v11, Vo1, v10} for

F,|G/Hy x G/ Hj), then the corresponding fixed-point Mackey functor is given by

Fa{voo + v11 + vo1 + v1i0}

A v
A v
v A
F2{voo + vo1,v11 + vi0} Fa{voo + v11,v01 +vi0} Fa{voo + v10,v11 + vo1}
AT C
B BT
A cT

F2{v00,v11,v01,v10}-

The final case looking at Fy[G/Hy x G/ Hs] is similar. Therefore, in our trigraded
complex of Mackey functors we can view each of these three fixed-point Mackey
functors corresponding to Fy[G]-modules isomorphic to Fo[G/e] as

AR,
N4

Finally, the fixed-point Mackey functor B corresponding to the Fy[G]-module
Fy[2G/e] = Fo|G/Hy x G/Hy x G/Hj3) can be viewed as the direct sum of two
copies of the above Mackey functor m whereby we square each Fo-vector space
on the various levels of the Mackey functor, and each transfer or restriction map

F in i becomes the transfer or restriction map given by the block matrix

F 0
0 F
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in the Mackey functor B. By viewing A: Fy — F3 as the matrix m and V: F3 —

Fy as the matrix [+ 1], note that

A 0 vV 0

0 V

and BT =

To obtain these transfer and restriction maps, we are writing elements in o [G / Hy X
G/Hy x G/Hj] as zjr = (@, bj,c;) for 0 < 4,7,k <1 and using the basis

{20007 2101, 20115 2110, 21115 20105 2100 2’001}

of Fo[2G/e], which gives us the bases
{2000 + 2011, 2101 + 21105 2111 + Z100, 2010 + 2001}

{Z000 + 2101, 2011 + 2110, 2111 + 2010, 2100 + 2001 }5
{z000 + 2110, 2101 + 2011, 2111 + 2001, Z010 + 2100},

{2000 + 2101 + 2011 + 2110, 2111 + 2010 + Z100 + 2001 }

of Fo[2G/e]r, Fy2G /e)2, Fy[2G [e]s and Fy[2G /€] respectively. We now
need to understand the differentials in our triple complex of Mackey functors.
Let d', d*> and d® denote the differentials for the bottom levels of the singly-
graded chain complexes of fixed-point Mackey functors computing 7, (XP7* HF,),
7, (392 HFy) and m,(X77° HF;) respectively. Then, the differential for the bot-
tom level of our triple complex of fixed-point Mackey functors with homology
m (XPrrtaretres HIRY) is given by

d=d" +d*+ &,

noting for example that when we apply d' to an element of the bottom level of a
Mackey functor in our triple complex it acts as the identity on each component
of the tensor product that does not come from the singly graded chain complex
of Mackey functors computing «, (3P7* HF,). The differentials at higher levels of
our Mackey functors are given by applying the differentials d', d and d® at the
bottom level and then taking fixed points.

The fixed points of these three differentials d', d> and d® can be computed
explicitly using our above bases in a similar manner to the proof of Theorem 3.10.

For example, to compute the differential Il — M corresponding to d' given by
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(14 t9) x id x id, we first observe that at the bottom level we have that

2000 F 2000 1 2100, Z111 F— Z111 + 2011,
2101 F 2101 + 2001, 2010 > 2010 1 2110,
Zo11 F 2011 t+ 2111, 2100 F 2100 1 2000,
2110 F* 2110 t+ 20105 2001 F 2001 + Z101-

If we take Hi-fixed points, i.e. extend this map linearly to the basis elements of
Fo[G/e]"1, we see that

Zpo0 + 2011 F* 2000 + 2011 + 2111 + 2100, Z111 + 2100 7 2000 1+ 2011 + 2111 + 2100

Z101 + 2110 7> 2101 + 2110 + 2010 1 2001, Zo10 + 2001 —* 2101 + 2110 + 2010 + 2001,

and hence we are left with the 4 x 4 block matrix [‘:;] If we instead take Hy

or Hs-fixed points, then in either case we get the matrix [g;] If we take G-

fixed points, then we get the matrix [z} = [1 i} In general, consider the chain

complex of Mackey functors

R Bad Bl R

associated to d’ for some fixed i € {1,2,3}. Then, the G/H; level of this chain

complex of Mackey functors is given by
]

]

AT
F2 Al M M

and the G/ H; level for each j # i is given by

o o]

CT
F; «— Fy ¢ Fy «—

Furthermore, the G/G level of this chain complex of Mackey functors is given by

5

Vome V] e VY

Fo ¢~ F; «+—F5 ¢&— .-

Note that we are not explicitly giving the differentials at the bottom level of our
chain complex of Mackey functors as we already know the bottom and middle
levels of m, HF; as well as the transfer and restriction maps between them from
the Cs-equivariant calculation in Chapter 3, as discussed earlier in this section.

Next, consider the chain complex of Mackey functors

i i
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associated to d'. Then, using our bases for the various levels of these Mackey
functors (in particular we are looking at our earlier basis for Fo[G/H; x G/ Hs)),
we see that both the G/H;, and G/Hj levels of this chain complex of Mackey

functors are given by

and the G/H; level is given by
FRERER ...

Finally, we see that the G/G level is given by the chain complex

The result is symmetric for the various other singly-graded chain complexes con-

tained in our trigraded complex of Mackey functors of the form
C— < -

or

Pl

Note that so far we have been discussing the trigraded complex of Mackey functors
computing m, (XP71 972177 HIRy) for p,q,r > 0. However, if at least one of p, ¢
or r is negative then the corresponding trigraded complex of Mackey functors
will have reversed arrows in at least one of the three directions compared to our
trigraded complex for actual representations, which comes from the fact that
we will be taking the tensor product with one of the dual singly-graded chain
complexes of Mackey functors constructed earlier in this section. For example,
if we are looking at m,(¥P717972773 HFy) where p > 0 and ¢,7 > 1, then our

trigraded complex of Mackey functors now looks as follows:

» = =
/A e
= |l |l
||
st Loy Ly
= |l |l
S| —| ¢
7/ 7/ s/

A4 =] =]
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The arrows in one of these trigraded complexes of Mackey functors that are
reversed when compared to the trigraded complex for actual representations can
be computed similarly using the same bases at each level of these fixed-point
Mackey functors from before, and using our earlier description of the differentials
at the bottom level of one of the dual singly-graded complexes computing either
w, (X7P HFy), 7, (X792 HFy) or w, (X773 HFy) where p,q,r > 1. In particular,
suppose that our trigraded complex of Mackey functors contains the dual chain

complex

A -E N

associated to d' for some fixed ¢ € {1,2,3}. Then similar to before, the G/H;

level of this chain complex of Mackey functors is given by

[4 4]

[4 4]
s 3 N

F2 2 Fl
and the G/H; level for each j # i is given by

F2Spl Aple 9

The G/G level of this chain complex of Mackey functors is given by

N R Ny - e N
Next, consider the dual chain complex
oMo

associated to d!, so in particular we view ml as being the fixed-point Mackey
functor associated to the Fo[G]-module Fo|G/H, x G/Hs). The G/H, and G/Hj

levels of this chain complex of Mackey functors are given by

N R Ny - R N

and the G/H, level is given by
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We have now constructed for each (p,q,7) € Z? a trigraded complex of fixed-
point Mackey functors whose homology is precisely m, (3P71 7972773 HFy). How-
ever, even though we can ignore the bottom levels of these Mackey functors as
we already know the G /e and G/H; levels and the transfer and restriction maps
between them in m, (¥P71972%773 HF,), computing the homology of this triple
complex (with respect to the total differential) in general is difficult due to the
large powers of I, in the total complex at the top and middle levels. The remain-
der of this chapter discusses ways that we can overcome this issue of computing
the homology of this large chain complex mainly through the lens of the multi-

plicative structure of w, HIF,.

4.3 The Poincaré series of Holler-Kriz and du-
ality

The additive structure of the top level 7§ HF, is computed in (2], and the authors
present the result in the form of Poincaré series encoding the dimensions of the
Fo-vector spaces appearing in each degree. From the perspective of Section 4.2,
these Poincaré series can be obtained by computing the homology of the top level
of the trigraded complex of Mackey functors associated to a given (p,q,r) € Z>.
When we focus at a single level of our trigraded complex, the homology can be
computed by iteratively running the spectral sequence of a double complex.
Recall that in general if ' = (., is a double complex, then we have two

homological spectral sequences
EZ, = H,(H,(C,d"),d") = He(C,d" + d")

and

EZ, = HJ(H,(C,d"),d") = Hy,(C,d" + d")

converging to the homology of C' with respect to the total differential d = d* 4 d",
where the horizontal differential d* decreases the first grading by one and the
vertical differential d” decreases the second grading by one. However, when dis-
cussing WEH F, we are dealing with complexes with three gradings, so as men-
tioned above we will need to use the spectral sequence of a double complex iter-
atively. That is, we first run the spectral sequence for the double complex given
by setting one of the three gradings to be zero, and then we run the spectral se-

quence again for the double complex which in one direction is given by the third
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grading we set before to be zero and in the other direction is the total complex
of the previous double complex. We will show explicitly how this is done in the
case of computing 7% (Xr7r 9724775 {F,) for p,q,r > 0.

Theorem 4.2 (Holler-Kriz). Suppose that p,q,r > 0. Then, the Poincaré series
for 7€ (Xportao2tros Ry is given by

(L4 +a?) (14 4a9) 1+ Aa") =2 (14 A2 ) (14 A2 ) (142" ).

Remark 4.3. In the above Poincaré series, the coefficient of 2 is the dimension
of the Fy-vector space at degree ¢. Furthermore, we have re-written the form of

the Poincaré series given in [2] to make it symmetric in p, ¢ and r.

Proof. As discussed in Section 4.2, the top level of the trigraded complex of

Mackey functors computing m, (37719724793 [F,) is given by the triple complex

[ ] ../ ../
[ ] . ../ . ../ .

Note that each e represents a copy of F; and each ee represents a copy of F3, and
the differentials were given in Section 4.2. Now, we want to compute the homol-
ogy of this triple complex with respect to the total differential d = d* + d? + d3.
Using the spectral sequence of a double complex, there are six ways to compute
the homology ¢ (Yportao2tros [Fy). For example, we can first take homology
with respect to d' and run the spectral sequence of a double complex converging
to the homology with respect to d* + d?, and then take homology with respect to
d? and run the spectral sequence of a double complex converging to the homology
with respect to d* + d®> + d*> = d. The other five ways of iteratively using the
spectral sequence of a double complex correspond to the other five permutations
of d', d® and d°.

To compute the homology 7&(XP71+272+79s HF,), we will first run the spec-
tral sequence converging to the homology with respect to d* + d? where we first
compute homology with respect to d', recalling from our above diagram of the

triple complex the differential d' points to the left. The E'-page of this spectral
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sequence then looks as follows:

.
[ ] .—.7.
./. O/._.7.

We see that there are no higher differentials, so the spectral sequence collapses on
the E'-page. Furthermore, there are no non-zero differentials in the os-direction,
so the above diagram tells us the complete homology 7¢ (Xportar2tros R, geo-
metrically as three adjacent faces of a cube with side lengths p + 1, ¢ + 1 and
r+ 1. More precisely, each point (with integer coordinates) inside this cube gives
us a term in the Poincaré series, so if we were looking at the whole cube then we

would have the Poincaré series
(1_|_..._|_3;P)(1_|_..._|_3;q)(1+..._|_x7")_

However, looking at our above diagram we need to remove the cube represented
by

214+ D+ g (14 -+ 1)
sitting inside it, so we have that the Poincare series for 7% (Zr717972%79s [fFy) is

given by
(L - aP) (L 4a?) (1 - a”) =2 (1 2P ) (L -+ (L a1,
O

Note that the Poincaré series given in Theorem 4.2 is symmetric in p, ¢ and

r as one would expect, but it can also be re-written in a more concise form as
(1_|_...+xp)(1+.‘.+xq)_|_(1_|_..._|_1;P+‘1>(x_|_..._|_x7"),

although this polynomial is no longer symmetric in p, ¢ and r. This form of the
Poincaré series can be obtained by instead looking at the horizontal cross sections
of our above diagram of the E'-page. If we want to compute 7¢ (ZVH&) for
virtual (or non-actual) representations V' = po; + qog + o3, then our spectral
sequences do not generally collapse on the El-page as in the proof of Theorem
4.2. For convenience, we list the Poincaré series for virtual representations below

as presented in [3, Section 2.6].
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Theorem 4.4 (Holler-Kriz). Suppose that p,q,r > 1. Then, the Poincaré series
for w8 (L7Por=1027r9s [JIfy) is given by

b T (L) T (LT (Lt )

Theorem 4.5 (Holler-Kriz). Suppose that p,q > 0 andr > 1. Then, the Poincaré
series for w¥(LPo1 17275 [[y) is given by

1 1 r—2 r —r —r

i . A+z+- 42" ) +a" 1+ +2P")(1+---+277).
Theorem 4.6 (Holler-Kriz). Suppose that p > 0 and q,r > 1. Then, the Poincaré
series for w¥(Xr71=1727%s [[Fy) is given by

1

xqtr—p

1

a4 a2

(T4 4z A+ 2" P +

in the case that q,v > p+1, and is given by
1 1
E(1+...+xq—2)(1+..._‘_xp—7”>_‘_F(l_‘_...+$P—1)(1_|_...+;L~T—1)

in the case that p > r, and the case where p > q is symmetric.

The relevant triple complexes for Theorems 4.4, 4.5 and 4.6 are given respec-

oL Tl ST
prsefinrara i se g

Now, one might hope to use the spectral sequence of a double complex on the level
of Mackey functors in order to compute explicitly the complete Mackey functor
homotopy 7y HF;. However, when we are working with this spectral sequence of
Mackey functors we run in to the problem of exotic transfers and exotic restric-
tions. That is, when we reach the E*°-page of our spectral sequence of Mackey
functors there may be non-zero transfers or restrictions that are not visible due
to them being in higher filtration, although in many cases we can resolve this
problem using Proposition 2.15 or that 7, HF; consists of cohomological Mackey

functors.
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Example 4.7. Suppose that we want to compute the Mackey functor homotopy
7, (377177273 HF,). By Theorem 4.4 we know that the top level contains only a
copy of [Fy in degree —3. Now, in this case our triple complex of Mackey functors

is given by

N

> ™
g ‘
= —|> [ |
| P—|—©
e e
——u
Note that we can ignore the G/e levels of these Mackey functors and the transfer
and restriction maps between the G/e and G/H; levels in m (3771772773 HF,)
since we already know these as discussed in Section 4.2. If we take homology in
the oi-direction, and then in the oo-direction and finally in the o3-direction, we

are left with the partial Mackey functor

IFy

N

[y [y [y

in degree —3 (and zero in every other degree). However, we want to determine
whether there are also non-zero restriction maps in this portion of the (Cy x Cy)-
Mackey functor w_g(X~7277273 HF,). If there was a non-zero restriction map
Res for some i € {1,2,3}, then we must have that Res{j : Fo — Fy is the
identity map. But by Proposition 2.15 we know that

Resgi o Trgi = Z ¥
YEWH, (G)

which is therefore the zero map as the action of the Weyl group Wy, (G) on the
Fy at the G/H; level is trivial, so we have reached a contradiction. Note that
we could have alternatively deduced that there are no restrictions maps using
that this Mackey functor is cohomological, and so the composite Trgi o Resgi is
multiplication by the index [G : H;] = 2, i.e. is the zero map.

Hence, since the restriction of 7_5(X~717727? HF;) to any of the Cy-subgroups
H; is the Cy-Mackey functor m_,(X72° HF5) which we know from Chapter 3, it
follows that the only non-zero homotopy Mackey functor in z, (3771772773 HIFy)

is the dual constant Mackey functor F} in degree —3.

Using the calculation of Example 4.7 and Anderson duality, we can now ex-

plain as in Chapter 3 how for every (p, ¢, r) € Z* we have that Theorem 4.4 follows
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from Theorem 4.2 and the three symmetric versions of Theorem 4.6 follow from
the three symmetric versions of Theorem 4.5, and more generally on the level of

Mackey functors.

Proposition 4.8 (Guillou-Yarnall). As (Cy x Cy)-spectra, we have that S*HFy ~
>PH F_;
Remark 4.9. This twisting is proved in [3, Proposition 4.2, but we present an

alternative proof here that is analogous to the proof of Proposition 3.8.

Proof. 1t suffices to show that 24*pH& ~ HF}, and by the uniqueness of
Eilenberg-MacLane spectra we just need to show that they have the same ho-

motopy Mackey functors. First, note that

Ek(24_pH]F£> = Ek(E?)_UI_@_USHF_?)
— Ek_S(E"”*UTUSH&).

Now, from Example 4.7 (or alternatively by the result of Theorem 4.35) we know
that
F; ifk—3=—3,
By (57O HE) =
o 0  otherwise.

Therefore, it follows that
F; if k=0,
Ek(24_pHF_2) =q—

0  otherwise

which are precisely the homotopy Mackey functors of HF3. O]

Recall by Proposition 3.9 (applied now to (Cy x C)-Mackey functors) that if
M is any Fy-module, then the Anderson dual I, HM of the Eilenberg-MacLane
spectrum H M is precisely HM*. That is, by our characterisation of the Anderson

dual of an HIFy-module from Section 3.2 we have that
my (HM") = (x_y HM)".
Let k,p,q,r € Z be arbitrary. Then, by the above discussion we have that

(), (BP7 9727075 ) (HEF,))"

= (Ekfpol —qoa—r0o3

Il

T k+po1+qoa+ros (H]Ii;>
(ZTINTII ).

I
B
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However, by Proposition 4.8 we have that ¥3~71772793 [Fy ~ HIF;. That is,

Z,k(z_pal_QQ_mBH@) o Efk(23_(p+1)01_(Q+1)U2_(T+1)U3HIF_Q)

_ E_k_?)(Z_(p+1)al_(q+1)02_(r+1)03H&).

Hence, we have shown that
ﬂk(2p01+q02+T03H&) ~ (E_k_g(Z_(p+1)01_(q+1)02_(r+1)03H&))*-

In particular, this explains how we can view Theorems 4.4 and 4.6 as corollaries
of Theorems 4.2 and 4.5 respectively, where we only look at the top levels of these

homotopy Mackey functors, noting that for every n > 1 we indeed have that
Hom(Fy, Fy) = F3,

recalling that the top levels of our homotopy Mackey functors are always finite-

dimensional Fy-vector spaces.

4.4 The ring structure of the positive cone

In this section we will compute the complete Mackey functor structure of the
homotopy =, (XY H IFy) for actual representations V', and we express our answer
as a single Mackey functor of RO(G)-graded rings which will in fact be an RO(G)-
graded Green functor. In particular, we derive the ring structure of the top level
¢(SVH [Fy) for actual representations V' with additive structure given previously
by Theorem 4.2. First, we introduce some analogous terminology from Chapter
3 that will be used throughout the remainder of this chapter.

Definition 4.10. The positive cone is the subring of Wf,H F, given by the direct
sum of all WE(ZVH&) for V an actual representation of G, i.e. V = po,+qos+ros

with p,q,r > 0.

That is, using the terminology of Definition 4.10 our goal in this chapter is to

compute the complete Mackey functor structure of the positive cone.

Definition 4.11. The negative cone is the subring of WEH& given by the direct
sum of all 7% (XY HF,) for V = poy + qos + ros with p,¢,r < —1.

If we are not in the positive cone or the negative cone, then we are in one of
the six mized cones, i.e. when V' = po; 4+ qoy + ros is such that not all of p, g

and r have the same sign.
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Definition 4.12. If exactly one of p, ¢ and r are negative then we are in one
of the three mixed cones of Type I, and if exactly two of p, ¢ and r are negative

then we are in one of the three mixed cones of Type II.

We will only look at the positive cone in this section because it has the simplest
ring structure, but our method of deriving this ring structure will give us insights
into how we should be viewing the negative cone as well as the six mixed cones.
Before we do this however, we introduce some further terminology (which applies

not just to the positive cone).

Definition 4.13. We say that 7(XV HF,) has tridegree (p,q,7) if V = poy +

qos + ros and we say that it has topological degree i.

Moreover, we will refer to the triple complex (from Section 4.2) whose ho-
mology is & (P71t 93 {F,) as the triple complex at tridegree (p,q,r) and
similarly for the topological degree.

For each i € {1,2,3}, let z; be the generator of 7{(S° A HFy) = Fy and
let y; be the generator of 7 (S% A HF,) = F,. By a similar argument to the
ring structure in the Cy-equivariant case from Chapter 3, we know that the ring
structure of 7T§H F, when % contains only non-negative multiples of o; (and does
not contain non-zero multiples of o; for j # i) is given by the polynomial ring
Fylx;, y;]. This can also be seen (assuming that ¢ = 1) by using the ring structure
of the positive cone in WSQ HTy from Chapter 3 and that the restriction map Resg2
is a ring map that is non-zero on non-zero elements in m,(S*"* A HF,), where the
restriction map being a ring map follows since m, HF; is an RO(G)-graded Green
functor.

One would hope that when we involve o1, 09 and o3 at once, then each non-
zero class in homology is given by some product of these six classes, and indeed

this is true modulo a single relation.
Theorem 4.14. The positive cone in WfHIF_Z 15 given by the ring

Fz[xh Y1,T2, Y2, X3, 1/3]
(z1Y2y3 + Y122y3 + Y1yox3)’

with the classes x; and y; for 1 < i < 3 defined as above.

Proof. Let C be the trigraded triple complex from the proof of Theorem 4.2 whose

homology gives the positive cone. Then, we have a direct sum decomposition

C = R @ Ry,
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where R, and R, are defined as follows. Using the notation from Section 4.2, the
elements of R, are precisely the generators zggo + 2101 + 2011 + 2110 of each copy of
Fy[2G /e]¥ 2 F2 in C. The elements of R, consist of the generators of each copy
of Fy[G/G]¢ and Fo|G/H;]% 2 Fy for i € {1,2,3}, the generators of each copy of
Fy[G/e]® 2 Fy, and the diagonal elements

(2000 + 2101 + 2011 + 2110) + (2111 + 2010 + 2100 + Z001)

of each copy of Fy[2G/e]¥ = F2 in C. This direct sum decomposition of our

trigraded triple complex C' is shown visually below.

Y Y Ry iy

Note that ee in the above diagram of the direct summand Ry denotes only the
diagonal element of the corresponding copy of F3.

As in the proof of Theorem 3.10, the ring structure of the positive cone is
induced by taking the tensor product of the Fy[G|-modules on the G/e levels of
the trigraded complexes of Mackey functors and then taking fixed points. How-
ever, when we want to multiply elements of the subrings Fy[x1, y1], Fo[z2, y2] and
Fylxs, ys], we are only tensoring singly-graded complexes together. So, since for
each 1 < i < 3 we know that z;"y;" is represented by the sum of the cosets
H; + t;H; € Fo[G/H,]¢ (where j # i), it follows that for all 1 < i # j < 3 we
j

have that the product x?lylmlx?] yjm is represented by the generator

(Hi, Hy) + (t;Hi, Hy) + (Hiy t,Hy) + (t;H;, tH;) € Fo[G/Hy x G/ HyC,

and the product =7y x5y, 2x5*ys™® is represented by the diagonal element in

Fy[2G /€] = F2, where n;, m; > 0 for each 1 <1 < 3.
Therefore, if we let 1 denote the generator of the unique copy of Iy at tridegree
(0,0,0), it follows that

3

Ry = Fylx1, 41, 2, Yo, w3, y3]{1}.

Now, let = denote the unique element in R; at tridegree (1,1, 1). The portion of
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C' at tridegree (1,1,1) is shown below.

T1T2Y3 Y1T2Y3
'Y [ J

e

T1Y2Y3 Y1y2y3
[ -~ 00

T1T2T3 Y1x2x3
[ [

T1Y2T3 Y1y213
[ J [ J

So, letting d = d* + d? + d? as in the proof of Theorem 4.2, we see that

d(Z) = (x1y2y3 + y122ys + y1y213) - 1.

Notice that we can view R; as an Ry-module generated by =, i.e. that

R, = FQ[ﬂUl,y1,$2,92,9€37y3]{5}-

Indeed, we see that any element £ in R; satisfies

d(&) = m(z1y2ys + y122ys + y1yaxs) - 1

for a unique monomial m in Fy|xy, y1, e, Y2, 3, y3], and furthermore given any
monomial m there is a unique such £, so by the Leibniz rule (noting that the
trigraded triple complex C' is a differential graded algebra under tensor product

at the G//e level) we can therefore label £ with m - = since

d(mZ) = d(m)= + md(=)
= m(z1Y2y3 + Y122Y3 + Y1YaT3) - 1

as d(m) = 0. Hence, we have that the differential d is a map of Fy[x1, y1, T2, Yo, 3, y3]-
modules determined by d(Z) = (z142y3 + y122Y3 + y1y2x3) - 1. The positive cone

is the homology of the chain complex
R, % R,

concentrated in degrees 0 and 1, so since this map is injective the homology is

given by the cokernel of this map, which is precisely the ring

F2[331, Y1,22,Y2, T3, y3]
(T1Y2y3 + Y172y + Y1Y273)
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Using the result of Theorem 4.14 and that 7, HF; is an RO(G)-graded Green
functor, we can now compute all the homotopy Mackey functors 7, (XY HF,) for
actual representations V' = poj +qos+ros. Note that we will give a more explicit
computation of the homotopy Mackey functors in the positive cone in Section 4.7
that is generalisable in computing the homotopy Mackey functors in the negative
and mixed cones, though in this section we show how the full Mackey functor

structure of the positive cone can be derived with little computation.

Theorem 4.15. The Mackey functor structure of the positive cone in wy HFy is
given by the Mackey functor of RO(G)-graded rings

Fax1,y1,22,92,23,y3]
(z1y2y3+y122y3+y1y223)

T T

Faly1,22,y2,23,y3] Fa[x1,y1,42,%3,Y3] Fa[z1,y1,%2,y2,y3]
(z2y3+y273) (z1y3+y123) (z1y2+y122)

\/

Faoly1, y2, ys)

where each restriction map is the identity on a generator of the domain that is also
a generator of the codomain and is zero on a generator otherwise. The transfer

maps are always ZEro.

Remark 4.16. Since the restriction maps in the above Mackey functor of RO(G)-
graded rings are ring maps and the transfer maps are all zero, the Mackey functor
is an RO(G)-graded Green functor.

Proof. We already know that the top level of this Mackey functor is the positive
cone as an RO(G)-graded ring by Theorem 4.14. We first look at the restriction
maps Resgl, Resfl2 and Resgs. By symmetry, it suffices to consider Resg1 and we
begin by looking at Res$ (z;) and Res% (y;) for i € {1,2,3}. The chain complex
of Mackey functors computing 7, (S?* A HIFy) is given by (noting that we only
draw the G/G, G/H; and G /e levels)

1 0 Y1
Fo<~———1I,

(ol

Fy[G/G) <——TF,[G/H,]

Y

Fo[G/G) ~——TF,[G/H,).
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So, we see that Res$, (1) is zero in homology but that Res% (1) is non-zero in
homology, and thus we will identify Resg1 (y1) with y;. Similarly, the G/G, G/H;
and G/e levels of the chain complex of Mackey functors computing 7, (572 A HFy)
is given by
2 0 Y2
[y Iy
1 ( > 0 1 ) 0
IFQ <0— ]F2
( j A( jv

Fo[G/G) < F5[G/Hy).

Therefore, we see that Res§ (z2) and Res (y2) are both non-zero in homol-
ogy, and we identify Resfj (z2) with zo and Res% (yo) with yo. Similarly, both
Res$, (z3) and Res% (y3) are non-zero in homology and we identify Res$, (z3)
with z3 and Res% (y3) with ys. Since m, HF, is an RO(G)-graded Green functor,
we know that Resg1 is a ring map and thus for any monomial z%yJ' z2yl? 25y

in Fo[xq, Y1, T2, Y2, T3, y3] we have that

0 1f21>0,

J1 .92, 92 .43, .73

G /.41 J1 42 Jo 43 J3\ __
Resf, (7' yi' w5y’ 05 y5’) = ‘
Y1 x5 Yy s ys”  otherwise.

Now, as in the statement of the theorem we want to show that the G/H; level of
the positive cone in 7, HF, is given by the RO(G)-graded ring

]F2 [yb Z2,Y2, T3, y3]
(w2ys + yoxs)

To do this, note that if V' = poy + qos + ros is an actual representation, then as

discussed in Section 4.2 we have for every k that
ﬂ£1(2p01+q02+w3HF_2) ~ 7T]§2 (Zp—&-(q—&-r)oH&)‘

That is, the G/H; level of the homology at tridegree (p,q,r) is given by a shift
(by p trivial suspensions) of the Csy-equivariant homology at degree ¢ + r from
Chapter 3, i.e. unlike in Chapter 3 the middle levels of our homotopy Mackey
functors carry some redundant gradings. In particular, recalling from Theorem
3.10 that the positive cone in 7T§2 HTF, is given by the polynomial ring Fy[z, y], the
restriction Resf (y1) (which we also denote by y;) is identified with the element

1 € Fy[z,y|, the restrictions Resf} (v2) and Res$, (z3) (which we also denote by
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2 and x5 respectively) are both identified with z, and the restrictions Res% (o)
and Res{j (y3) (which we also denote by y» and ys respectively) are both identified
with y. Therefore, since z and y generate the positive cone in 7T§2 HTF, it follows
that the restrictions yi, T2, ¥, x3 and y3 generate the G/H; level of the positive
cone in w, HIF,.

Now, we know from Theorem 3.10 that the homology m¢2(XP+(@)7 HIF,)
contains ¢ + r + 1 copies of Fy generated by x4 z9t"~1y ... 2" in degrees
p,p+1,...,p+ q+ r respectively. However, an arbitrary element in the homol-
ogy mi(Xportaoztros fRy) at the G/H; level is given by yPrdFyk ettt which
as discussed above is identified with the element x4t ~(F+0y,+t ¢ Fylz 3], As-
suming that at least one of k or r is strictly between 0 and ¢ + r, we see that

—k r— —(k—1 1 r—+1
both yPzd Fybah s and yPadFTV k1Dl

or both yPal Fykzi=tyt and
Pt Dkl r =1 1 e identified with 2977~ (+H0yk+l € Fylz, y], which im-
plies that

yrad sl (ays + yors) = 0
and

—(k+1 r—t I
Yyl g (kt )y§$3 eyg Y29y + yax3) =0

respectively. In particular, taking p = 0 and ¢ = r = 1 we see that we have the
relation xoys+ysxs = 0, and all other relations are multiples of this relation. Note
that indeed the restriction map Resg1 preserves the relation x1ysys + y122y3 +
y1y2x3 = 0 at the top level as

Resgl (T1Y2y3 + Y172y + Y112x3) = Y1(T2y3 + yax3) = 0.

Now that we have deduced the RO(G)-graded ring structure of the G/ H; level of
the positive cone in 7, HF; as well as the restriction map Resfh, we next want to
show that the transfer map Tlrfl,1 is zero in the positive cone. To do this, consider
an arbitrary monomial 7' 22y 2515 in the ring Folyr, 2o, yo, T3, Y3/ (T2ys +1ot3).
Since the homotopy Mackey functors in 7, HF; are cohomological, we know that
Tr$;, o Res$, is multiplication by the index [G : H;] = 2, i.e. is the zero map.

Hence, we see that

G (,,J1,.02,,02 .13, 93\ __ G G (. J1,.i2, J2, i3, 73
Try, (1 oy s ys’) = TrHl(ReSHl (Y1 w5y w5’ ys’))

=0,

which is precisely what we wanted to show. As mentioned before, all of the above

reasoning is symmetric if we want to look instead at the subgroups Hs or Hj.
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Now, the fact that we can write the G/e level of the positive cone in 7, HF; as
the RO(G)-graded ring Fa[y1, y2, y3] follows since if we look at our above diagrams
of the G/G, G/H; and G/e levels of the chain complexes of Mackey functors
computing 7, (S A HFy) and 7, (572 A HF,), we see that Res. (z;) for i € {2, 3}
is zero in homology and Res.f1 (y;) is non-zero in homology which we identify with
y; for each i € {1,2,3}. The transfer and restriction maps between the G/H; and
G /e levels follow from the Cy-equivariant case given by Corollary 3.13. [

Remark 4.17. Note that in the proof of Theorem 4.15 there is an alternative
argument for showing that the transfer maps are all zero that does not involve
the concept of cohomological Mackey functors. Indeed, note that the element 1
in the RO(G)-graded ring % is the restriction Res{; (1) of the element
1 € n§(S°AHF3), and we know as discussed in Section 4.2 that 7, (S°AHF5) is the
constant Mackey functor Fa, which has zero transfers and thus Tr$ (1) = 0. Since

w4 HF; is an RO(G)-graded Green functor, we have by Frobenius reciprocity that

1, (o fad) = T, (1 o)
= Trgl(l . Resg1 (y{lx?y%%?yé?’))
= Teg (1) - yi' aZyd oy’

=0.

We will now give an example to see how the Mackey functor of RO(G)-graded
rings given by Theorem 4.15 can be used to explicitly write down homotopy

Mackey functors in the positive cone.

Example 4.18. Suppose that we want to compute the homotopy Mackey func-
tors m, (X7 T2+ HIFy) at tridegree (1,1,1). By Theorem 4.14 we know that the

non-zero classes at the top level 7&(X71792%95 HF,) are given as follows:

Degree 0 Degree 1 Degree 2 Degree 3

T1T2X3 Y1223 Y1Y2x3 Y1Y2ys3
T1Y2T3 T1Y2Ys3
T122Y3

Here Z1752y3 and §1ya73 are the classes (or cosets) in the positive cone represented
by x1y2ys and yysx3 respectively. By Theorem 4.15, we see that all restrictions

of x1xox3 are zero. Furthermore, we see that only the restriction of y;z923 to the
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subgroup H; is non-zero, and similarly only the restrictions of x1ysx3 and x122y3
to the subgroups Hy and Hj respectively are non-zero. Next, we see that only
the restrictions of 717223 to the subgroups H; and Hs are non-zero, and only the
restrictions of Z1ysy3 to the subgroups H, and Hj are non-zero. Finally, we see
that all restrictions of y;yoy3 are non-zero as there are no factors of xy, xy or
x3. Therefore, we can deduce that the non-zero homotopy Mackey functors at

tridegree (1,1,1) are as follows:

Degree 0 Degree 1
Fy Fo @ Fy @ IFy
pri j pr3
pr2
0 0 0 Fy IFy [Fy
0 0
Degree 2 Degree 3
Fy & Fy Fy
pri l pr2 / L \
v
]FQ FQ ]Fg ]FQ F2 F2
0 Fy

Note that using the notation of Definition 2.20, the Mackey functor appearing
in degree 1 is precisely the direct sum of the inflations of the constant Mackey

functor given by

¢;I1H2H3& = qﬁ}h& 52 gbj:b& b ¢ESIF_2

In [3], the Mackey functors appearing in degrees 0, 1 and 2 are denoted by
9, ¢rprF2 and mg respectively, noting that the authors denote the three Cy-
subgroups of G = Cy x Cy by L, D and R.

Finally, note that since we know all the homotopy Mackey functors in the
positive cone, we also know all the homotopy Mackey functors in the negative

cone by Anderson duality, as discussed in Section 4.3.
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4.5 The negative and mixed cones

We now turn our attention to virtual representations. The multiplicative struc-
ture is more complicated in these cases, just as it was in the Cy-equivariant case
in Chapter 3 when we discussed the negative cone in WffHIFJ. Again, we have
three copies of the Co-equivariant result given by «%(Xr7'HF,), 7¢ (3772 HF,)
and 7 (X773 HF5). So, for each i € {1,2,3} let 6; be the generator of 7%, (5727 A
HFy) = F, which we know is infinitely divisible by x; and y;, i.e. is divisible by
monomials in the graded polynomial ring Fy[z;, 3;]. As in Section 4.10, assuming
that ¢« = 1 this follows since the restriction map Resf{:,2 is non-zero on non-zero
elements in (X P71 HF,) for p > 2 as seen in Section 4.2, so we can use that
Resfl2 is a ring map as well as the ring structure of the negative cone in 7T§2 HTs,
noting for example that Res% (6;) is identified with 6 € 7r§2 HF,.

Unlike the ring structure of the positive cone given by Theorem 4.14, the
negative and mixed cones contain classes that are not defined solely in terms of
our previously defined classes from the three copies of the Cs-equivariant result
in 7, HF,. Indeed, looking at the Poincaré series of Theorem 4.4 telling us the
additive structure of the negative cone, we see (as in Example 4.7) that at tride-
gree (—1,—1, —1) there is a single non-zero class with topological degree —3, and

we will call this class
O € 15, (S 7777 A HF,).

The reason why this is a ‘new’ class is that the homology at each tridegree
(—=1,0,0), (0,—1,0) and (0,0,—1) is zero, i.e. we know in the Cy-equivariant
case that 7¢2(S—° AN H Fy) is zero. Furthermore, looking at the additive structure
of the mixed cones given by the Poincaré series in Theorems 4.5 and 4.6, we can

immediately write down another six ‘new’ classes. Let
K1 € T (ST To2ts A HEF,)
Ko € w7 (87172195 A HEFy)
kg € T (571792795 A HIFy)

be the unique non-zero classes (all of topological degree 1) at tridegrees (—1,1,1),
(1,—1,1) and (1,1, —1) respectively, and let

1y € 1 (57177277 A HTFy)
1y € w8 (S7O1 705 A HIF,)

13 € w8 (S7O172 408 A HIF,)
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be the unique non-zero classes (all of topological degree —1) at tridegrees (1, —1, —1),
(—=1,1,—1) and (—1,—1,1) respectively. The fact that each x; and ¢; for i €
{1,2,3} is a ‘new’ class again follows since 7¢2(S~7 A HF,) is zero. Now, we
claim that we can in fact pass between these seven classes by multiplying by
01, 65 and #3. Note that these seven classes are important as the negative and
mixed cones can be expressed entirely in terms of these seven classes as well as
our previously defined classes from the three copies of the Cy-equivariant result
in 7T€H .

Proposition 4.19. For each {i,j,k} = {1,2,3}, we have that
1if; = © and Kk;0; = 1.

Proof. We first show that x;0; = ¢, for each {7,7,k} = {1,2,3}. By symmetry,
it suffices to show that k16, = t3, and by degree reasons we just need to show
that 10, is non-zero. Now, the homotopy Mackey functor k; corresponding to
the class k1 is the constant Mackey functor Fy. Note that this Mackey functor
can be derived by a similar argument to that of Example 4.7. That is, we look
at the trigraded complex of Mackey functors at tridegree (—1,1,1) and then take
homology in turn in the o1, 09 and o3 directions and notice that the restriction
map Resgi is non-zero for each i € {1,2,3}, so each transfer map Trgi must be
zero as the composite Resgi o Trgi is zero. The non-zero restrictions between the
G/H; and G /e levels is as usual determined using the Cy-equivariant result given
in Chapter 3.

Furthermore, as seen in Section 4.2 we have that the homotopy Mackey functor

corresponding to the class 6, (namely w_,(S722 A HF,)) is given by

IFy

AN

b= Ty F, F,

NP4

F,.
Now, in order to show that k1605 # 0 it suffices to show that
ReSgB(IﬁQQ) = Resgg(/ﬁ)Resgrj(@Q) #0,

where here we are using that the restriction map Resfl3 is a ring map. Looking at
the two Mackey functors s, and 6, we see that Resg3(/f1) # 0 and Res%(ﬁg) # 0.
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Thus, since
T (STortotos A [Fy) 2 ni2(S' A HFy)

and
T3 (S7272 A HFy) = 79%(S72 A HTFy),

it follows that Res% (k1) is identified with 1 € Fy[z, y] and Res, (65) is identified
with 6, and so indeed

Resg3(/-€1)Resg3(92) =1-6=0#0.

Next, we show that (;0; = © for all i € {1,2,3}, and again by symmetry it
suffices to show that (160, = ©. Recall from Example 4.7 that the homotopy
Mackey functor corresponding to the class © is the dual constant Mackey functor

5. The homotopy Mackey functors corresponding to ¢; and 6, are given by

IFy

AN

bl = Iy Iy Iy

NS

and

As before, the Mackey functor ¢; is obtained by looking at the trigraded complex
of Mackey functors at tridegree (1, —1,—1) and then taking homology in turn in
the 09, 03 and oy directions and using that for each i € {1,2,3} the composite
Resfli o Trfli is zero in this Mackey functor. Alternatively, the Mackey functor
11 can be obtained using our algebraic description in Section 4.7. We notice in
particular that the transfer map Tlrfl1 is non-zero in both the Mackey functors ©
and 6; and that the restriction map Resfl1 is non-zero in the Mackey functor ¢;.

Thus, since
(87177279 A HFy) = 795 (S7% A HFy) = 6,

rH (S =298 A HIFy) = 79(S7% A HFy) = 6
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and
rH (8721 A HIF) = 7§2(S° A HIFy) = 1,

we have that
7 (8777279 A HF,) - n3(S72 A HF,) = 73S~ 772775 A HF,)
as 6 -1 = 6. Hence, by Frobenius reciprocity it follows that

uby = vy - Tr§y (w73 (S727 A HFy))
= Tr§, (Res$j, (1) - 73 (ST27 A HTFy))
= Tr§ (a1 (ST 772773 A HFy) - 773 (S7% A HFs))
— TV, (7 (ST A HE))
=0.

]

Remark 4.20. By Proposition 4.19, we have in particular that ;0;0, = © for
all {i,7,k} = {1,2,3}. Hence, since O is non-zero it follows that the products
6,0y, for j,k € {1,2,3} with j # k are non-zero. The result of Proposition 4.19

can also allow us to think of the class © as being divisible by 6, 85 and 3, where

©
1, = — and k; =

0; 0,05
for each {i,7,k} = {1,2,3}.

We also have the following corollaries of Proposition 4.19 telling us when

various products involving the seven classes O, t1, t9, 3, K1, Ko and k3 are zero.

Corollary 4.21. Ifi,j € {1,2,3} are such that i # j, then
L,Hj = 0.

Proof. Let k € {1,2,3} be such that {i,j,k} = {1,2,3}. Then, by Proposition
4.19 we know that ¢; = k;0;. However, this implies that

Liej = /€k0]2 =0

as we know that 9]2- =0. O
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Corollary 4.22. For each i € {1,2,3}, we have that
LiR; = 0.

Proof. Suppose for the sake of a contradiction that ¢;x; is non-zero. Then, by
degree reasons we have that ¢;x; = 1 where 1 denotes the single non-zero class
at tridegree (0,0,0) (which has topological degree 0). Let j € {1,2,3} be such
that j # ¢. Then, multiplying both sides of the equation ¢;x; = 1 by 6, gives
1iki0; = 0;. However,

Lmi@j = /‘ii(l,z'ej) =0

as (;0; = 0 by Corollary 4.21. Hence, since 6; on the right-hand side is a non-zero

class, we have indeed reached a contradiction. O
Corollary 4.23. For each i € {1,2,3}, we have that
(")2 = 97,@ = /ﬁli@ = Li@ = 0.

Proof. Let i € {1,2,3} be arbitrary. By Proposition 4.19, we can write © = ¢,;0;.

So, since 62 = 0 we have that
0? = 207 =0,

and similarly

Furthermore, since x;t; = 0 by Corollary 4.22, we have that
Hi@ = KJ,L'LZ'GZ' = 0.

Finally, to show that 1;© = 0 choose j,k € {1,2,3} so that {7, j,k} = {1,2,3}.

By Proposition 4.19, we have that ¢; = k;0, and so

Li© = K;0,0 = 0,(K;0) =0
as we know from above that ;0 = 0. O
Corollary 4.24. For everyi,j € {1,2,3}, we have that

Lilj = 0.
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Proof. We first show that (7 = 0. Choose j, k € {1,2,3} so that {i,j,k} =
{1,2,3}. By Proposition 4.19, we have that ¢; = r;0;. Then, it follows that

2 _ 202 _
;i =r;0;, =0

as 07 = 0. Next, suppose that 7,5 € {1,2,3} are such that i # j. Choose
k € {1,2,3} so that {i,7,k} = {1,2,3}. By Proposition 4.19, we have that

i = Kb, and v; = k;0;. Therefore, it follows that
Litj = Iij@k:‘iiek == :‘ijliz‘gz =0
as 02 = 0. O

Furthermore, by the result of Proposition 4.19 we can now understand the
non-zero homology classes appearing in tridegrees (—p, —q, —1), (—p, —1, —r) and
(—1,—q,—r) for p,q,7 > 1. Again since 7¢2(S~7 A HFy) = 0, we know that the
homology classes in these tridegrees are not products of the classes coming from

the three copies of the Cs-equivariant calculation in 7T€H IF,.

Proposition 4.25. The non-zero homology classes in tridegrees (—1, —q, —r) for
q,7 > 1 are given by the products
0, 05

iz, J2 i3, 73
Ta'Ya T3Y3

K1 -

for x2y2* a monomial in Fa[xa, yo] and x5y%® a monomial in Falxs, ys].

Proof. Fix some arbitrary ¢,r > 1 and let x?y%é and x?y? be monomials in
Fylza, yo] and Faxs, ys] respectively with is + jo = —q and i3 + j3 = —r. By

Proposition 4.19, we know that k10,03 = ©. However, we also know that there

are non-zero classes 22 and —%. in homology such that
T3 Y2 %37 Y3
0, o 0 o
i, J2 _ 3 i3, J3 _
& Loy =0 and —— - x3'ys’ = 0.
2 Y2 T3'Y3
02 63

Hence, it follows that k; is a non-zero class in homology at tride-

12 J2 43, 73
Ty Yo" T3 Y3

gree (—1,—q,—r) such that we get back the class © after multiplying by the

. . . . . . . Z'/ s/ i/ -/
monomial z5y22x$y3®. Furthermore, notice that if x32y;* and x:ys* are mono-
s v g
mials in Fg[xg,ylg] fmc/l IFIQ[xg,yg] with @, + ji = —q and @ + j5 = —r such that
iz, J2 .43, 73 iy, J2 i3, J3
T3y w5 Y3’ # X5 Yy ws s’ then

02 05 02 05
w2, 2 iz gs 7 V@ g
TylYa T3'Y3 T3 Yy T3 Y3
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Indeed, assume without loss of generality that iy > ¢,. Then, we see that

(92 93 i 02 ‘93
k1 i2, J2 .43 j3.x2 M s, s
Lo Yo T3'Y3 Y2 T3'Y3
is non-zero, but
02 03 i2
Hlﬁﬁ Ty = 0.
2,72 ..'3,73
Lo Yo" T3'Ys

By Theorem 4.4, we know that the Poincaré series for 7¢(S717%277%s A HF,) is

given by

1
(e (b ),

so the above products form the full tridegree (—1, —¢q, —7). ]

Remark 4.26. By the proof of Proposition 4.25, we can therefore think of the
class © as being infinitely divisible by x; and y; for each i € {1,2,3} and we can

write
0 05 C)
1 7 - B T == B T T —,
2,,J2 13 ,,]3 12,72 ,.13,,J3
Lo Yy T3'lY3 Lo Yo T3 Y3

which we will do in Section 4.6.

Although as mentioned earlier it is clear that no non-zero class in tridegrees
(=p,—q,—1), (=p,—1,—r) and (—1, —q, —r) for p,q,7 > 1 is a product of classes
from the three copies of the Cs-equivariant result in WgH&, the same is in fact

true in the full negative cone.

Proposition 4.27. If zyl 22yl 252 is a monomial in Fylzy, y1, Ta, Yo, T3, ys],
then
6 02 03

i, g1 g2, J2 i3, 3
1Y TYy T3lYj

=0.

Proof. We proceed by induction on j;. If j; = 0, then we notice that

o b b —(l’yy+ymy+yyw)el 0 s
i1 02, J2 43,93 i1+l ie, Jot+1 i3z, j3+1
Ty ToYy T3'Y3 Ty ToYy  X3Y3

as yl% = 0. However, the right-hand side is zero as we know from Theorem
x
4.14 that

T1Y2y3 + Y1223 + y1yexs = 0.
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Similarly, given an arbitrary j; > 0, we see that

( n n ) 0, 0, 05
T1Yoy3 + Y122Y3 + Y1Yox3) — — —
15293 1253 15243 xlll-i-ly{l x;zy%frl x%Byéerl

0, 0, 05 n 0, 0, 05 0, 0, 05
T A1, 01 .2, j2 i3, 03 i1+1, J1—1 _is—1_jo+1 i3 j3 i1+1, j1—1 iz j2  i3—1, ja+1
T oYy T3'Y3 Ty Y1 Ty Yy T3Y3 Ty Y1 TolYy Tz Y3
0, 0, 05

i1, J1 42,92 ,.03,,03
TrYr T2Yy T3'Ys

where the last equality follows by the induction hypothesis, so this product is

Zero. O

By degree reasons we know that Ox; = Oy; = 0 for all ¢ € {1,2,3} and
similarly ¢;z; = ¢;y; = 0 for all 4, j € {1,2,3} with i # j. However, it is not true
that k;z; = kyy; = 0 for all 7 € {1,2,3}.

Proposition 4.28. For each {i,j,k} = {1,2,3}, we have that
KiTi = Tk + YT and Ky = Y; Y.

Proof. By symmetry, it suffices to compute the products kix; and k1y;. To do
this, recall from the proof of Proposition 4.19 that the homotopy Mackey functor
corresponding to x; is the constant Mackey functor Fy. Similarly, we know from
Theorem 4.15 that the homotopy Mackey functor corresponding to y; is also given
by Fy. So, since sy lives in tridegree (—1,1, 1) with topological degree 1 and y;
lives in tridegree (1,0,0) with topological degree 1, we can identify Reng(/ﬁ)
with 1 € Fo[z,y] and Res (y1) with y € Fa[z,y], and so

Resfy, (k1) = Resf, (1) Resf, (1) = y # 0,

which implies that x1y; # 0. Since the product ryy; lives in tridegree (0,1,1)
with topological degree 2, it follows from the ring structure of the positive cone
given by Theorem 4.14 that

R1y1 = Y2y3-
Similarly, we know from Theorem 4.15 that Resg2 (x1) is non-zero, so we can
identify Res% (z1) with @ € Fa[z,y], and thus

Resflg (/{11'1) = Resflz (lil)Resg2 (:L‘l) =1 7& 07

which implies that k12, # 0. However, the product ;2 lives in tridegree (0, 1, 1)

with topological degree 1, so in this case we just know that it is some non-zero
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element in the copy of F3 generated by roys and yox3. But since k19, = yays we

have in particular that

R1T1Y1 = T1Y2Y3,

and hence using the relation z1yoys + y122y3 + y1y223 = 0 it follows that

K1T1Y1 = Y1(Tays + yoT3).

Therefore, we must have that
K1T1 = Z2Y3 + Y2T3

as otherwise we would have that k1x1y; = y122y3 or K121Yy; = Yy1y2x3, but neither

of these are equal to y;(x2ys + yox3) by Theorem 4.14. O

By similar arguments to the proof of Proposition 4.28 using that the restriction
maps are ring maps and that the homotopy Mackey functors corresponding to
cach r; is the constant Mackey functor Fy, we have that 7 is non-zero and
kik; = yi for each {7,7,k} = {1,2,3}. Note that we cannot express 7, 3 and
k3 in terms of the z;, y; and 6; classes. Indeed, if this were the case then since x?
lives in tridegree (—2,2,2) it would have to contain a factor of 6, but 6,2, = 0
whereas H%l’l = K1%2y3 + K1Y2T3 is non-zero. An alternative expression for H% is

given in Section 4.6.

Corollary 4.29. Given any monomial m in Fa[zy,y1, 22,2, T3,y3], there is a
non-zero class N, in the negative cone such that n,, -m = ©.
Proof. Fix a monomial x{'y]' x2yd*x3yl® in Falxy, y1, 22, Yo, 3, y3], and consider

the product

il 02 03
1 i1+i2, J1+i2 i3, i1+71+73 "
Ty Yo T3'Y3

If we first multiply this product by xé“’yg%?yg?‘, then we are left with

1 i1, 91 , 41+
Lo Y2 Ys

gt 02 03

By inductively using that k121 = x2ys + yaxs and k1y1 = y2y3 from Proposition

i1, J1

4.28, if we multiply the above by xi'y;' we get k10,05 which is equal to © by
Proposition 4.19. 0
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Note that if n is a class in the negative cone such that n - z1yoysm = © for
some monomial m in Fo[z1, Y1, T2, Yo, T3, y3], then by the relation x1ysys+y1x2ys+

y1y223 = 0 in the positive cone it follows that

0 Y1T2Y3m + 1 - Y1yorzm = ©

and hence we must also have that either n-y12oysm = © or n- y1y2x3m = O, but
not both. This discussion is of course symmetric if we instead first assume that
N - y1T2ysm = O or i - y1y.x3m = O. For example, if we multiply the product
2 92 93
Kl———5
T2Y2 Y3
by either z1ysys or yix2ys then we get back O, though we get zero when we
multiply by y;14223. The homology in the negative cone (and indeed in the mixed

cones) will be discussed more explicitly in Section 4.6.

4.6 An algebraic description of the homology

In this section we will give a complete algebraic description of the homology
WﬁH&. In particular, we explain how the homology in the positive, negative
and mixed cones can be expressed entirely in terms of the classes x;, y;, 0;, ki, i

and © for ¢ € {1,2,3}, involving the polynomial

[ = 2123 + 1102y3 + Y1923

seen earlier in this chapter. Note that by Proposition 4.19, we can then express
the homology entirely in terms of the z;, y;, 6; and &; classes for i € {1,2,3},
but for ease of notation (and the fact that for example 1 = kof3 = K36s), we will
continue using the notation ¢; and ©. First, recall from the proof of Theorem
4.14 that we have a direct sum decomposition of the trigraded triple complex

computing the homology in the positive cone given by

Folw1, y1, v2, Yo, 23, ysH{E} © Fa[w1, y1, ¥2, yo, 73, y3]{1},

where = lives in tridegree (1,1, 1) and topological degree 3, and the differential d

takes the first summand to the second summand. In particular, we saw that

d(Z) = (z1y2y3 + Y122y3 + Y1yexs) - 1,

and the homology in the positive cone is given by the homology of the chain

complex

Folz1, 41, 2, Y2, T3, ys]{=} ERN Folz1,y1, 2, Y2, T3, y3] {1}
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concentrated in two degrees, where f is the polynomial as above. This map is
injective but not surjective, so the homology in the positive cone is given by the

cokernel of this map, namely the quotient ring

Fz[xh Y1,T2, Y2, T3, 93]
(21Y2Y3 + Y122Y3 + Y1Yo3)

Now, we claim that similar analysis can be done for the negative cone and the
six mixed cones, and we begin by looking at the negative cone. As in Section 4.5,
let © denote the unique non-zero homology class at tridegree (—1,—1,—1) and

topological degree —3. We will be considering the Fy-module

FZ[Ilaybx%yan?wy:ﬁ] {@}
(9%, 5%, 23°, 3%, 257, 5°)

The notation here is similar to that used in Chapter 3, and this set is the Fy-linear

span of elements of the form

S)

i1, J1 .02, J2 .43, J3
T1Y1 T2Ys T3'Y3

where xily{lx?ygzx?y? is a monomial in Fy[xy, y1, T2, Yo, T3, y3]. Note that each
of these elements do not necessarily represent homology classes, rather they will
be used to label elements in the trigraded triple complex computing the homology
in the negative cone. However, various sums of these elements will be homology
classes as discussed in Remark 4.26. We will also consider the Fo-module

Folz1, y1, 22, Yo, T3, Y3

00 1,00 00 ,,00 00 ,,00
('7:1 7y1 ,1'2 7y2 7'1'3 7y3 )

{0,0,05)

where the homology classes 6, 6, and 65 are defined as in Section 4.5, and this
set is the [F»-linear span of elements of the form
010205

i1, J1 .92, 92 .13, J3
LY oYz T3'Y3

which are indeed all homology classes, namely the product of the homology classes

01 ) 05

i g1 da, J2 i3, J3
Tyryr  TYy T3Y3

In order to make sense of the following theorem, we will use how products of this

form behave in homology when multiplied by monomials in Fy[21, y1, T2, Yo, X3, y3),

for example that we get zero when the monomial does not divide z% y{%? y%é ZB? yg“
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Theorem 4.30. The homology in the negative cone is given by the homology of

the chain complex

F F
2[$1,y1,$2,y2,l’3,y3] {@}g 2[$1,y1,$27?/2,$3>y3] {919293}

o0 oo (oe) o0 o0 o0 [ee) o0 o0 oo o o0
($1:?/1>I27?J2a$3ay3) ($1a917$27927$3>y3>

concentrated in two degrees, given by multiplication by the polynomial f = x1y2y3+

Y1T2Y3 + 11y2x3. More precisely, this map is given by

C) 010,05
i1, 01 .42, J2 .13, J3 =] i1, 1 .42, J2 .43, 93
T1Y1 LoYz T3'Y3 1Y oYz T3Y3

Proof. We first consider a direct sum decomposition D@ X of the trigraded triple
complex computing the homology in the negative cone defined as follows. The
elements forming the direct summand D are the domain and image of any of
the three differentials d*, d? and d® whose domain is a single copy of Fy. In the

following diagram, the direct summand D is the domain and image of all the red

differentials.
RaNw A
A A
punny

Letting d = d* + d? + d® as usual be the total differential in our trigraded triple
complex, we have that the homology in the negative cone is given by the homology

of the chain complex

DaXx3iDaX.

Since the differential d maps D onto itself and maps X to both D and X, we can

write the differential d as the matrix

dp d¥
0 dy

with respect to the direct sum decomposition D ¢ X. Now, notice that we have
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the short exact sequence of chain complexes (each concentrated in two degrees)

0 D Dae X X 0
dp [dOD jﬂ dx
B o
0 D D& X X 0,

so we get a long exact sequence in homology. However, by iteratively using the
spectral sequence of a double complex at each tridegree, we see that the homology
of the chain complex D 5, D is zero. Therefore, it follows that the homology in

the negative cone is isomorphic to the homology of the chain complex
X 55 X

That is, in the triple complex at each tridegree in the negative cone we can ignore
all elements contained in the direct summand D, so we only consider the trigraded

triple complex X. Now, we break X into a direct sum
X=5 595

as we did in the proof of Theorem 4.14. At each fixed tridegree in X, the (non-
zero) Fy-modules in each position of the corresponding triple complex are copies
of either Fy or F3. The copies of Fy at each tridegree in X as well as the copies
of Fy contained in each F3 generated by the elements (1,0) € F2% corresponding
to the sum

Zooo + Z101 + Zo11 + 2110

form the direct summand S;. The copies of Fy contained in each F3 generated

by the diagonal elements (1,1) € F2 corresponding to the sum
(2000 + 2101 + 2011 + 2110) + (2111 + 2010 + Z100 + Z001)

form the direct summand S;. Now, by degree reasons each element in S; can be

labelled with a unique element in

F2[x1;yh$2a?/2;$37y3] {@}
(9%, 5%, 23, ¥3°, 25°, y5°)

and every element in S5 is a unique homology class in

Fala1, y1, 22, 4o, 23, 3] 1010205}

o0 o o o o oo
(xl Y YL s X9 5 Yo s X375 Y3 )
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For example, the following diagram shows the trigraded triple complex X =
S1 @ S at tridegree (—3, -2, —2).

[S) ) €]

I%z2y3 T1Y1T2Y3 y%z2y3
[ [ ] [ ]
) @ ) /
@ vau3 T1Y1Y2Y3 vivau3
[ ] _— [ X ] —_—> 00
016203 010203
zq v1
S o o
wjzges T1Y1T2T3 viz2es
® [ J [ ]
O e ,©
T1Y273 T1Y1Y2T3 Y1y273
[ ] [ ] [ ]

As in the proof of Theorem 4.14 we have that the total differential d in the
trigraded triple complex X takes the summand S; to the summand S;. In
particular, we see that the total differential is given by multiplication by f =
T1Y2ys + Y122y3 + y1y2x3 with respect to our labelling of elements in S; and S.

Indeed, given i1, j1, 22, Jo2, i3, J3 = 0 we see that

( : )
i1, J1 .42, J2 .43, J3
Ty LY T3'Y3

B 0,60505 010,05 010505
i1—1, g1 .42, jo—1 iz j3—1 i1, J1—1, i2—1, j2 i3, j3—1 i1, J1—1 _lia jo—1_liz—1_ 73’
Ty Y1 T2Ys T3'Ys iy Ty Y3 T3'Ys Ty ToYy T3 Y3

where we interpret any of these terms with a negative power of x; or y; in the de-
nominator as zero. Using how homology classes in Sy behave under multiplication
by elements in Fy|xy, y1, 2, y2, 3, y3] we see that the above is equal to

010263

T i i, 2 i3, g3
Ty Y1 T3 Yy T3'Y3

so we are done since the homology in the negative cone is given by the homology
of the chain complex
5;1 — f;g.

m
Notice in particular that the map in the statement of Theorem 4.30 is sur-

jective, which can be seen for example by Proposition 4.27. Furthermore, as

discussed in Section 4.5 we can indeed view elements in the kernel of this map as
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classes in the negative cone such that we get back the class © after multiplying by

a monomial in Fs[z1,y1, T2, Yo, 3, y3]. For example, we can think of the element

C) O
_F
T1Y2Y3 Y122Y3

in the kernel as a homology class such that we get back the class © after mul-

tiplying by z1yoys3 or yi1xoy3, and hence zero after multiplying by yiyor3 as
T1Y2Ys + Y122ys + y1y223 = 0 in homology. That is, we can identify it with
the product
2 92 03
Ki———
T2Y2 Y3
using Proposition 4.28. We now look at the six mixed cones, and the arguments
in these cases will be similar to Theorem 4.30. We first consider the mixed cones
of Type 1. For each ¢ € {1, 2,3}, consider the homology class ; defined in Section
4.5. If i = 1, we will be looking now at the Fy-module

F2[$17y17x27y27x3ay3]{ﬁ }
0o ,,00 1
(9%, y1°)

spanned by elements of the form

2,,J2.13,,J3
i a2 Y2 T3'Y3
19

with 2%yl a2yl 22yl a monomial in Fylzy, y1, T2, 4, T3,ys]. As before, not all
elements in this Fy-module will represent homology classes, but every element in

the Fso-module

F2[$1791£’2,i/j>$3,y3]{91}
(xl » Y1 )
is indeed a homology class, however not every element will represent a non-zero

homology class.

Theorem 4.31. The homology in the mixed cone of Type I corresponding to
tridegrees (—p, q,r) with p > 1 and q,r > 0 is given by the homology of the chain

complex

F2[$17y1,$2,y2>$3,?/3]{ﬁ A Folz1, y1, 22, Y2, T3, Y3 (0}
(25, ¥°) (9%, y1°)

concentrated in two degrees, given by multiplication by the polynomial f = x1y2y3+

Y122Yy3 + Yy1yox3. More precisely, the map is given by

K1 i 2, i3, js 01 iz, J2 .13, 73
Tt TSy o f s a g vy
1Y 19

and similarly for the other two mixed cones of Type 1.
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Proof. As in the statement of the theorem, we will look at the mixed cone corre-
sponding to tridegrees (—p, q,r) with p > 1 and ¢, > 0. Similar to the proof of
Theorem 4.30, we begin by breaking up the trigraded triple complex computing
the homology in this mixed cone into £ &Y where the elements of the summand

E are the domain and image of the red differentials in the following diagram.

[ ] . ../ . ../ .
® . ..7 . ../ .

That is, the elements of F are the domain and image of a horizontal d' differential
whose source is a copy of Fy. The homology in this mixed cone is given by the

homology of the chain complex
EaY S FEay,

and we can again express the total differential d in terms of this direct sum

dg dY,
0 dy|

By a similar argument to that given in the proof of Theorem 4.30 in constructing

decomposition as the matrix

a short exact sequence of chain complexes, we have that the homology in this

mixed cone is isomorphic to the homology of the chain complex
dy
Y —Y.
We now break up Y into a direct sum
Y=ToT

as follows. Note that in each tridegree in Y, the non-zero Fy-modules making
up the corresponding triple complex are copies of either Fy or F3. However, the
copies of Fy were either single copies of Fy in @ Y or copies of [y contained in
an F2 in £ @Y generated by (1,0) € F3. The elements of T; at each tridegree
are precisely the copies of Fy generated by the elements (1,0) in each copy of F3
in Y and the single copies of Fy in Y that were contained in an F2 in E®Y. The



4.6. AN ALGEBRAIC DESCRIPTION OF THE HOMOLOGY 83

elements of Ty at each tridegree are precisely the copies of Fy that were single
copies of Fy in E@Y as well as the copies of IF; generated by the diagonal element
(1,1) in an F3 in Y. As in the proof of Theorem 4.30 we can by degree reasons

label each element in 77 by a unique element in

F2[$1,y17$2>yz,$3,y3]{/{ }
o0 o0 1
(‘Tl 7y1 )

and each element in 75 is a unique homology class in

Folz1, y1, T2, Y2, T3, Y3] (6}
s oS 1
(25°, y1°)

and furthermore any element in either of these Fo-modules gives us an element in

Ty or T,. The following diagram shows the trigraded triple complex Y =T} & T,
at tridegree (—3,1,1).

AT N oy
o T2Y3 vy T2Y3
[ ] [ ]
91 oy N 4y
zp J2Y3 vy Y23
— > o0 — > oo@
FL r1 K1
o2 T1y1 v3
01 01
=, T273 yy F2es
[ ] [ ]
01 o 01 o
oy Y23 g Y273

As in the proof of Theorem 4.30, we see that the total differential d in the trigraded
triple complex Y is given by multiplication by f. O]

Notice that each of the three maps in the statement of Theorem 4.31 are
neither injective nor surjective, i.e. they each have non-zero kernel and cokernel,
unlike in the positive and negative cones. For example, looking at the mixed cone
corresponding to tridegrees (—p,q,r) where p > 1 and ¢, > 0, we see that all
elements of the form mlx?yg%?yé?’ are in the kernel of multiplication by f and
therefore represent non-zero homology classes. This agrees with our perspective
from Section 4.5 of the ring structure of the negative and mixed cones, where
the product /ﬁx?yg?x?yg?’ of homology classes is non-zero as k16203 = O (by
Proposition 4.19) implies in particular that

io_ jo i3 j3 92 03

R1T3' Yy T3y — = —— = O,
2,,J2 13,,J3
Lo Y2 T3'Y3
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Furthermore, notice that the only element in the kernel of multiplication by f in
the first map in the statement of Theorem 4.31 at tridegree (—2,2,2) is the sum
K1 K1 K1
a:—lxzys + 913—1y2$3 + Zyw&
which we can therefore identify with the homology class k% from the ring structure
perspective of Section 4.5, recalling that indeed k?z; = K1Toys + K1yox3 and
k2y1 = K1yays by Proposition 4.28. Looking at the cokernel of the first map in
the statement of Theorem 4.31, we see for example at tridegree (—3,1,1) that

%ygyg is non-zero (i.e. is not in the image of multiplication by f) and that

01 1 1
—Y2Y3 = —TalY3 + —Y2T3,
U1 T1 T

which follows since

K 0
d ( : ) = (21Y2Y3 + Y1T2Y3 + Y1Y2T3) - -
1 1
0, 0, 0,
= —Yoly3z + —Ta¥Yy3z + —Y2T3.
Y1 T X1

From the perspective of Section 4.5, we can identify this homology class with

k16,. Indeed, using Proposition 4.28 we have that

0
K10y = KiZ1— = —ZoYs + — Ui,
T T X1
or alternatively
0
k1t = K11 — = —Yays.
n n

Finally, we look at the three mixed cones of Type II. For each i € {1,2,3},
consider the homology class ¢; as defined in Section 4.5. If we take i« = 1, then

we will now be looking at the Fy-module

F2[$1,y1,$2792ax37y3]{b )
(8,95, 2, 95°)
spanned by elements of the form
31
i1, J1 42, 2 .43, I3

where z1'yi' 2 yy o5 y3® is a monomial in Fo[xq, y1, 29, y2, 23, y3]. Again, not every

i1,,J1
1Yy

element of this set will represent a homology class, unlike elements of the Fo-

module
Folz1, y1, 22, Yo, T3, Y3

(37, 45°, 25°,45°)
that we will also be considering.

{6205}
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Theorem 4.32. The homology in the mized cone of Type II corresponding to
tridegrees (p, —q, —r) with p > 0 and q,r > 1 is given by the homology of the

chain complex

Fz[xl y1,$2,y2,$3,y3]{ } f F2[$1,y1>$2,?/2,9§37y3] {0 9 }
A1 203
($27?J2a$3ay3) (iﬂg,yg,%,yg)

concentrated in two degrees, given by multiplication by the polynomial f = x1y2y3+

Y1T2Y3 + Y1y2x3. More precisely, the map is given by

N
LIV iy jo_ i3, j3 i2, J2 .43, 3"
Ty Yo T3'Ys 752 Y2 T3'Y3

and similarly for the other two mized cones of Type II.

Proof. By symmetry, it suffices as in the statement of the theorem to just consider
tridegrees (p, —q, —r) where p > 0 and ¢,r > 1. As usual, we first break the
trigraded triple complex computing the homology in this mixed cone into a direct
sum F @ Z where elements in F are the domain and image of any d? or d?
differential whose source is a copy of s, i.e. the domain and image of the red

differentials in the following diagram.

./' / “/'

./K ./X ../.
| |

AR AR

The homology in this mixed cone is given by the homology of the chain complex
FezZbFaoz

where d denotes the total differential, which we can write with respect to this

direct sum decomposition as the matrix

dp d%
0 dy|

Again, by a similar argument as in the proof of Theorem 4.30, we see that the

homology in this mixed cone is isomorphic to the homology of the chain complex

dz

7 = Z.
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We then break up the trigraded triple complex Z into a direct sum Z = U; & Us,
where the elements of U; and U, are defined in the same way that the elements
of T7 and T respectively were defined in the proof of Theorem 4.31. By degree

reasons, we can identify U; and U; with

]Fg[.flfl, Y1,22, Y2, T3, 93]

(5%, 45, 457, ¥5°)

]F2[$17 Y1,%2,Y2, T3, ?J3]

(257, 45, 457, ¥5°)

{Ll} and {9293}

respectively. The following diagram shows the triple complex at tridegree (2, —2, —2)
in Z = (]i D (]2.

L L
1 Y1 1

T2y3 z2v3
° °
) ) /
Lyaus Y1453
e < o0 <~ oe@
2 117 50- 2
270203 z1Yy10203 Y7 0203
L1 L1
zowg Y agas
° °
L1 L1
X
Ly Y1 yps
° °

Again by a similar argument to the proof of Theorem 4.30 we see that the total

differential d in the trigraded triple complex Z is given by multiplication by f. [

4.7 The complete Mackey functor structure

From the perspective of the algebraic description of the top level WgH& given
in Section 4.6, we will now compute the complete Mackey functor structure of
myHF;. As discussed in Section 4.2, we already know the middle and bottom
levels (and the transfer and restriction maps between them) of the homotopy
Mackey functors, so it suffices to compute the transfer and restriction maps Trgi
and Resf,i for each ¢ € {1,2,3}. In fact, by symmetry it suffices to compute the
transfer and restriction maps TI'%S and Resgs. First, we consider 73 (Sportaoz A
HT,) for p,q € Z. We know that this is isomorphic to 7¢2(S®+97 A HF,), but
we will focus on the RO(G)-grading. If p, ¢ > 0, then as seen in Section 4.2 this
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homology at the G/Hj level is given by the homology of the double complex

a”fa’% T1y1:r§ yf:rg
[} [ J
2 T 2
TIT2Y2 T1Y122Y2 Ys3x2Yy2
e <— o0 <— ‘oo
17283 y172€3
ziy3 1193 vy}
[} [ I ) [ 1)
1Y283 y1y2€3

where the above diagram shows bidegree (2,2), and as usual each e represents
a copy of Fy and each ee represents a copy of Fa. Furthermore, the non-zero
maps are all codiagonal maps V or [z} Hence, by an analogous direct sum
decomposition argument as we have done when analysing the top level 7T§H Fy in
Section 4.6, we have that the homology 73 (SP71t972 A HIF,) for p, ¢ > 0 is given

by the bidegree (p, q) part of the homology of the chain complex

Folz1, y1, 22, y2l{&s} N Folz1, y1, 22, y2]{1},

where f3 = 192 + Y172 and & is the element (1,0) € F2 at bidegree (1,1).

Note that a monomial x4 z2yJ* in the polynomial ring Falzy, y1, 22, 10]{1} at

the G/Hj level represents the restriction Resf), (2l 22yP?) as discussed in the
proof of Theorem 4.15, recalling that the restriction map Resg3 is a ring map.
Similarly, if we look at the homology m//3(S 77192 A HFy) where p, ¢ > 1 then we

are computing the homology of the double complex (looking at bidegree (—2, —2))

o —> 00 —> 00

where each non-zero map is either the identity map, or the diagonal maps A or
[A A} By a similar argument to the proof of Theorem 4.30, the homology of

the above double complex is isomorphic to the homology of the double complex

t3 t3
r1xg y1o2
[ ] [ ]

|

t3 t3
Y2 Y192
e —> 00

0162
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Notice that the diagonal element (1, 1) € F2 at topological degree —4 in the above
diagram of bidegree (—2, —2) is precisely Resf}, (6162) = Res, (61)Resf, (62) which
we identify with 6,6, (i.e. we identify Res$, (61) with 6; and Res% (6,) with 65).
If we let t3 denote the unique non-zero class at bidegree (—1, —1) then the homol-
ogy mH3(S7P71~972 A HIF,) is given by the bidegree (—p, —¢) part of the homology

of the chain complex

F F
ixl;i/l,foz,y:j {tg} f3 2[9(3173/1,5627y2] {9 9}
(x17y17x27y2) (xlay17x27y2)

where again f3 = 1y +y122. Similarly, if we look at w//3(S~P71 972 A HF,) where
p > 1 and ¢ > 0, then we are computing the homology of the double complex
(looking at bidegree (—2,2))

o —>0 [ ]

U

o — 00 — 00

U

o — 00 — 00

which is isomorphic to the homology of the double complex

911‘%

[ ]

1 1

k k

3 3
S B
@y 2 yp 2
e —> 0o
0122y2

1 1

k k

23 23
zly ylyz
e — 00
‘91?/2

similar to the proof of Theorem 4.31. If we let k3 denote the unique non-zero
class at bidegree (—1,1), then identifying Res (1) with 6; as mentioned above,
we see that the homology 713 (S~P71+972 A HFF,) is given by the bidegree (—p, q)
part of the homology of the chain complex

FQ[x17y1aw27y2] {kl} f3 ]FQ[II y17$27y2] {91}
(29°, y1°) (z2°,97°)

By symmetry, we have that 2 (SPo17972 A HT,) for p > 0 and ¢ > 1 is given by
the bidegree (p, —q) part of the homology of the chain complex

F [‘rl?ylam%y?]{kj} f3 F2[x17y1)x27y2] {92}
(2, y5°) (25°,y5°)
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where k2 denotes the unique non-zero class at bidegree (1, —1). Now, recall that

s (Grotaoatros A FR,) o plls (Grortanstr o FT)

> s (SP71te A HF,)

for all p,q,r € Z, i.e. if we introduce non-zero multiples of o3 then we are just
shifting our homology groups to higher or lower degrees via r trivial suspensions,
and we use y3 to keep track of the number of trivial suspensions. That is, if we are
looking at 7fs(SPo1+97247 A HF,) then we introduce yj to our above expressions
for elements of the double complex computing 73 (SP71 1972 A HF,).

However, we want to compute the transfer and restriction maps Tlrg3 and
Resg3 in , HIFy, and therefore as discussed in Section 4.2 we need to look at the
H3-CW structure on SP71+292%79s (for p g, r > 0) giving a triple complex that
computes 713 (SP71+eo2479s A [F,) where this H3-CW structure on S77% ~ S
has two cells in each dimension up to r. This problem can be resolved by giving
an explicit chain homotopy equivalence between the triple complex computing
mifs (Sportao2tros A [Fy) and the shifted copy of the double complex computing
mis(Spotao2 A HF,). We first look at the positive cone, and although we already
know the Mackey functor structure by Theorem 4.15 the perspective of the fol-
lowing theorem is generalisable for computing the Mackey functor structure in
the negative and mixed cones.

Theorem 4.33. The transfer and restriction maps Trg3 and Resg,3 between the
G/H;z and G /G levels of the positive cone in wy HFy are induced by the maps ng

and Rfls defined as follows between the two chain complexes

F2[$171/17$2>Z/271337y3]{5} i> F2[517173/17132ay2>$3;y3]{1}
R | |TH

H3

F2[9517yl,$2,y27ys]{§3} f—3> F2[$17?J1,I2,y2vy3]{1}

each concentrated in two degrees whose homology computes the G/Hs and G/G

levels of the positive cone. On the generators, we have that
1. T§,(1) =0 3. RG (1)=1

2. TF, (&) = yiyz - 1 4. RG(E) =ys-&.
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The maps Tl% and Rg3 are extended linearly to the whole Fo-modules, where

RIG{3 applied to any element with a factor of x3 is zero.

Remark 4.34. In the statement of Theorem 4.33, we see that RY (T, (&3)) =
y1y2. This agrees with Proposition 2.15 as the non-trivial element of the Weyl
group Wy, (G) sends &3 to yyy2. Furthermore, notice that TﬁS(RfIS(E)) = Y1Y2Y3,
and this does not contradict Proposition 2.23 since in tridegrees (p,q,r) with
r > 1 the maps T 1% and Rflg are defined as composites of the transfer and

restriction maps with non-identity chain homotopy equivalences.

Proof. At each tridegree (p,q,r) where p,qg > 0 and r > 1 we give explicit
chain homotopy equivalences ¥ and ® between the triple complex computing
mis (Sportao2tros A [Fy) coming from the product G-CW structure on SP7t A
S92 A 573 and the shift by r trivial suspensions of the double complex computing
mHs(Spoitao2 A HF,) as follows.

el R
N A

The chain map ® can be thought of as a diagonal map into the r** level (along
the o3-direction) of the triple complex computing w3 (SPo1T4o2+7s A HF,), and
the chain map ¥ can be thought of as projection onto half of each Fs-vector
space on the r' level of the triple complex and zero on the other levels along the
os-direction. More precisely, the chain map ® on a copy of Fy is given by the

diagonal map A and on a copy of F2 is given by the matrix

O = O =
—_ O = O

using the notation from Section 4.2. The image of the chain map ® is precisely
what is left over when we take homology in the os3-direction in the triple complex
at the Hs-level, so we see that the chain map ® induces an isomorphism in ho-

mology. Since ® is a chain map between chain complexes of vector spaces over
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the field [Fy that induces an isomorphism in homology, we know by [18, Theorem
10.4.8] that ® is a chain homotopy equivalence. Letting Tg3 = Tlrﬁ,3 o® and noting
that the transfer maps Trg3 were computed explicitly in Section 4.2 (for example
as the matrix BT on a copy of F3), we therefore see that ng (m-&) =m-y1ys
and T (m - 1) = 0 for any monomial m in Fa[zy, y1, 22, Yo, y3)-

The chain map ¥ on a copy of F2 in the 7" level in the o3-direction is projec-
tion onto the first component, i.e. is given by the matrix [1 O}, and on a copy
of F4 in the 7" level is given by projection onto the copy of F3 generated by the
vectors (1,0,0,0) and (0,0,0,1), i.e. is given by the matrix

1000

000 1|
We see that ¥ induces an isomorphism in homology, so by the same argument
as above we may deduce that it is a chain homotopy equivalence. Letting Rgg =
Vo Resgs and using for example that the restriction map Resg3 on a copy of F3
is given by the matrix B, we see that Rf, (m-Z) = m-ys&; and Rf, (m-1) =m-1
for any monomial m in Fa[z1, y1, 22, Y2, T3, y3] such that x3 does not divide m and
is zero otherwise. []

The argument for the transfer and restriction maps in the negative cone is
similar, though our chain homotopy equivalences are defined differently, as one
would expect.

Theorem 4.35. The transfer and restriction maps Trg3 and Resg3 between the
G/H;s and G/G levels of the negative cone in wy, HFy are induced by the maps

Tgs and Rg3 defined as follows between the two chain complexes

Falr1,y1,%2,y2,73,Y3] ) f Fa[r1,y1,%2,y2,73,Y3]
= 0,6,0
(wi’°7yi’°7x§°,y§°7x§°,y§°){ 1 (x‘f",yi’o,x?,y?,zg‘ly?){ 10205}
G

Fa[21,y1,22,y2,y3] t3 f31/ Folz1,1,22,y2,y3] 616
(29°,97°,25°,95°,95°) | ¥3 (29°,97°,25°,95°,95°) | vs

TG
H3

each concentrated in two degrees whose homology computes the G/Hs and G/G

levels of the negative cone. On the generators, we have that

1. Tg, <M> = y3 - 010203 3. RE, (010:05) = 0

Y3

2. 76, (&)

© 4 R%(@) =NYy2- %-
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The maps TI% and RgS are extended in the natural way to the whole Fsy-

modules, where RI% applied to any element involving x3 is zero.

Proof. At each tridegree (—p,—q, —r) where p,q,r > 1 we again give explicit
chain homotopy equivalences ¥ and ® between the triple complex computing
mls(§—por1=ao2=ros A | Fy) and the downwards shift by r-many trivial suspensions
of the double complex computing 73 (S=Po1-992 A [ Fy).

° %—.>7—.> oo/ ) ../.'f. ooo:/ .; ooo:/ .T.
e, I
o —— I _T_> ' T g ¥ ;\s? .T./.'f. _..T? .; ..T../ .T. K\z> ; N I
Hg | o — 00 — 00
R e P P

In this case we can think of the chain map ® as inclusion into half of each
Fy-vector space on the —r level (along the os3-direction) of the triple complex
computing 743 (S—po1—a02=r03 A [] F,), and the chain map ¥ can be thought of as
a codiagonal map on the —r level of the triple complex and zero on the other
levels along the o3-direction. More precisely, the chain map ® on a copy of Fy
is given by multiplication by the matrix M and on a copy of F3 is given by

multiplication by the matrix

0
0
0

o O O =

1

The image of ® is precisely what is left over when we take homology in the
os-direction in the triple complex, so we see that the chain map ® induces an
isomorphism in homology which implies as in the proof of Theorem 4.33 that ®
is a chain homotopy equivalence. The chain map ¥ is given on a copy of F3 in
the —r level of the triple complex by the codiagonal map V and on a copy of F3

in the —r level by multiplication by the matrix

r_ |10 1o
o1 0 1]’

which also induces an isomorphism in homology and is therefore a chain homotopy

equivalence. As before, we define T, = Trg3 o® and Rfj, = Vo Resgg. Notice
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that the matrices used in the definitions of our chain homotopy equivalences
in the negative cone are precisely the transposes of the matrices used in the
positive cone as given in the proof of Theorem 4.33. Furthermore, if y3 does

not divide a monomial m in Fay[z1, 41, 22, y2, y3| then we see that T§3(9192) =0
919293

which we can therefore identify with y3 for degree reasons as this product is
indeed zero, and similarly if we are looklng at R% (2) when m is a monomial in

Falx1, y1, 2, Yo, 3, y3] and both x3 and y1y» do not divide m. O

Finally, we look at the transfer and restriction maps in the six mixed cones.
As in Theorems 4.31 and 4.32, it suffices by symmetry to look at one of the three
mixed cones of Type I and one of the three mixed cones of Type II. However,
when considering each of these mixed cones there will also be two sub-cases as
unlike in the positive and negative cones the transfer and restriction maps are

not symmetric in the three Cy-subgroups.

Theorem 4.36. The transfer and restriction maps Tfrg3 and Resg3 between the
G/Hs and G/G levels of the mized cone of Type I in m, HFy corresponding to
tridegrees (—p, q,r) with p > 1 and q,r > 0 are induced by the maps ng and R%

defined as follows between the two chain complexes

F2[rl7y1,xz,y2,r37y3 {/{ } L Fo [11,y17$27y2,$3,y3]{9 }

(331 7y1 (11 7y1 )
G G
RH3 ’)TH:,,
FQ[I17y17$27y27y3 kL /3 FQ[IhylnynyvyS
Fafar.an 2 y2:5] ELNR TR S
(z9°,y5° { } (z9°,y5° { }

each concentrated in two degrees whose homology computes the G/Hs and G/G

levels of this particular mized cone. On the generators, we have that
1. T .(61) =0 3. R$.(01) =0,
2. T (k3) = y1y2 - 01 4. R, (k1) =ys - k3.

The maps ng and RIG{3 are extended in the natural way to the whole Fo-

modules, where R% applied to any element involving x3 is zero.

Proof. At each tridegree (—p, q,r) with p > 1 and ¢, > 0, the chain homotopy
equivalences we define between the triple complex computing 73 (S—po1+aoztros A
HT5) and the shifted copy of the double complex computing 7 (S~P71+972 A HF,)
by r trivial suspensions are defined in the same way as in the proof of Theorem
4.33. We then use the transfer and restriction maps given in Section 4.2 to obtain

the expressions for Tj, and R, . O
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Theorem 4.37. The transfer and restriction maps Trg3 and Resfl3 between the
G/Hs and G/G levels of the mized cone of Type I in my HFy corresponding to
tridegrees (p,q, —r) with v > 1 and p,q > 0 are induced by the maps Tﬁg and Rflg

defined as follows between the two chain complexes

Fa[z1,y1,22,92,23,y3] f Fa[z1,y1,22,y2,23,y3]

K = 0
Crwr) s} TR )
G G
RG, ( 7§,

Folz1,y1,22,92,y3] | &3 i3’_> Folz1,y1,22,92,93] | 1

(¥5°) Y3 (y$°) Y3

each concentrated in two degrees whose homology computes the G/Hs and G/G

levels of this particular mized cone. On the generators, we have that

v3

1. TG, (1) — 3. RS, (63) =0

&)
2. TG, (&) = Ky 4. RS (ks) =y - L.

The maps ng and Rgg are extended in the natural way to the whole -

modules, where RI% applied to any element involving 3 is zero.

Proof. At each tridegree (p,q, —r) with p,q > 0 and r > 1, the chain homotopy
equivalences we define between the triple complex computing 7% (SPo1+a92=705 A
HFy) and the downwards-shifted copy by r trivial suspensions of the double
complex computing 73(Sportao2 A [ Fy) are defined in the same way as in the
proof of Theorem 4.35. We then use the transfer and restriction maps given in

Section 4.2 to obtain the expressions for Tf, and R, . O

Theorem 4.38. The transfer and restriction maps Trgg and Resfi3 between the
G/Hs and G /G levels of the mized cone of Type II in w, HFy corresponding to
tridegrees (p, —q,—r) with p > 0 and q,v > 1 are induced by the maps T§3 and

Rf[S defined as follows between the two chain complexes

Falz1,y1,%2,¥2,23,y3] Falz1,y1,%2,¥2,23,y3]
»Y1,22,Y2,23, L AN »Y1,L2,Y2,23, 9 0
(@ ,95%,25° ) {u} (25°,95° 25 W5°) {020}
G

f
Fa[z1,y1,22,y2,Y3] {ﬁ} f_3> Fa[z1,y1,%2,Y2,Y3] {9_2}

(3°,95°,95°) Y3 (x3°,95°,y3°) Y3

TG
Hgz

each concentrated in two degrees whose homology computes the G/Hz and G/G

levels of this particular mixzed cone. On the generators, we have that
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1. T, (%) = ys - 6:05 3. RY, (6265) = 0
2 TG ﬁ = G 92
) TN 4 Rz, (1) = y1y2 - 2

The maps TI({;3 and Rfls are extended in the natural way to the whole Fo-

modules, where R% applied to any element involving x3 is zero.

Proof. This follows using the same chain homotopy equivalences defined in the
proof of Theorem 4.35. O

Theorem 4.39. The transfer and restriction maps Tfrg3 and Resg3 between the
G/Hs and G /G levels of the mized cone of Type II in w, HF, corresponding to
tridegrees (—p, —q,r) with p,q > 1 and r > 0 are induced by the maps T}% and

Rgg defined as follows between the two chain complexes

Falz1,y1,22,92,23, yd {L }

Folz1,y1,22 y2 z3, ya]
(29°,y5°,25°,55°) {9192}

oo oo
»T

’) ( 7y1
f;

Folx1,y1,22,y2,y3] 3 IF2[961 Y1,%2, y2 y3]
(x9°,97°,25°,y5°) {t } - (z9°,y7°,m5° {0 02}

each concentrated in two degrees whose homology computes the G/Hs and G/G

levels of this particular mized cone. On the generators, we have that
]. T§3(6192) == O 3 Rg3(0192) - 6192
2. T, (t3) = y1y2 - 010 4. R, (13) = y3 - ts.

The maps ng and RIG{3 are extended in the natural way to the whole Fo-

modules, where R% applied to any element involving x3 is zero.

Proof. This follows using the same chain homotopy equivalences defined in the
proof of Theorem 4.33. [

4.8 Applying the Bockstein spectral sequence

In this section we explain how we can use our knowledge of 7, HIF; to understand
mxHZ using Bockstein spectral sequences. For simplicity, we will focus on the
positive cone and we begin by looking at the top level. Given a fixed tridegree

(p,q,r) with p,q,r > 0, we have a Bockstein spectral sequence

(2p01+q02+r03HF2)[U0] = 7€ (Epal-‘rqtfz-‘r?“asHZ/\) (41)
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corresponding to the unrolled exact couple

. — g0 (pportaratros g7y 2 qG(sportaoatros f[17) 2 7 G (sporteortros gy

\/\/

Epal +qoa+ro3 H]FQ Epal +qo2+ro3 ]‘.”FQ

induced by the short exact sequence 0 — Z 27 - 7Z/2 — 0. In particular,
we have that E, = «§(Xport972t79s [F,) o] and the d' differential is given by
d*(z) = B(x)vy where 3 is the Bockstein homomorphism, which decreases degree
by one, and d* increases the vo-degree by one. More generally, the d” differential
increases vo-degree by r, and torsion of order 2* is encoded by a vy-tower of height
k. Further detail on the Bockstein spectral sequence can be found in [25, Chapter
10]. Note that we have similar Bockstein spectral sequences for the G/H; levels
of 7, HF; and m, HZ for i € {1,2,3}, as well as of course the G/e levels.

Theorem 4.40. The Bockstein spectral sequence (4.1) collapses to the E*-page.

Proof. By the construction of the Bockstein spectral sequence, it suffices to show
that the Bockstein homomorphism £ is exact. First, recall by Theorem 4.14 that

the positive cone in 7T§H IF, is given by the ring

IFQ['ID Y1,T2, Y2, T3, y3]
(21Y2y3 + Y122y + Y1y2xs)

Now, observe that (y;) = x; and §(x;) = 0 for each ¢ € {1,2,3}. Indeed, the
singly-graded chain complex of Mackey functors computing 7, (37 HZ) is given
by

Z 2 Z Z~—>2 7
Zl[Q;]LZA[Q; 192 2 192
(1) (s
Z|G |Gl <——Z|G/H] Z|G /G =———Z|G/H],

where on the left we are looking at the G/e, G/H; and G/G levels of the chain
complex of Mackey functors and on the right we are looking at the G//e, G/H; and
G /G levels for any j # i. In particular, the chain complex computing 7 (3% HZ)
is glven by Z 2 7Z, whereas the chain complex computing 7% (X% H Fy) is given
by Fy LR, To compute S(y;), we lift y; to the integral chain 1 € Z which maps
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under the differential to 2 € Z and thus after dividing by 2 we are left with the
integral chain 1 € Z. Finally, after reducing mod 2 we get that 5(y;) = x;. Since
x; is in degree 0 and the chain complexes are concentrated in degrees 0 and 1 we
have that B(x;) = 0. Since we have computed the Bockstein homomorphism
on the generators and we know that f is a derivation (see [26, Section 3.E]), we
have therefore completely determined /3 in the positive cone.

Now, consider an arbitrary class in the positive cone represented by a mono-
mial m = zyl z2y22By% that is not in the top degree in its corresponding
tridegree (i1 + j1, 92 + j2, 93 + J3), S0 we can assume without loss of generality that

i1 > 1. Suppose first that j;, jo and j3 are all even. Then, by writing

i 1 bz g2 iz g ]Jl.]2]2Aj3

Ty TS Yy TS Yy = 371 Y'Y T5Ys” Yot T Ys Ys
and using that § is a derivation determined by [(y;) = x; and f(z;) = 0 for all
i € {1,2,3}, we see that 5(m) = 0. Thus, we need to show that m is in the image

of 5. However, note that

B (&m) 5(y1) +y15 < ) = $1ﬁ =m,
X T T

where the second term in the first equality is zero by a similar argument to why
f(m) = 0 using that j;, jo and js are all even. Next, suppose that at least one
but at most two of ji, j» and j3 are odd. Let k, ¢ € {1,2,3} be such that only jj
and j, are odd, and let

Yke = )
yrye otherwise.

Then, we have that

m m m
B(m) = B(yre) — + ye (—) = B(yre)—,
Yre Yke Yre
which is non-zero as it is not in the ideal (z1y2y3 + y122y3 + y1y2x3) since [(yre)
is a sum of at least one and at most two distinct monomials. Finally, suppose

that ji, jo and j3 are all odd. Then, we see that

m
p(m) = B(ylyzyg)y oy +y1y2y33 ( ) = (T1Y2y3 + Y122Y3 + Y1Y223)
1Y2Y3

Y1Y2Y3 Y1Y2Y3

which is zero, so we again need to show that m is in the image of . However,
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we see that
m
m = Z1Y2Y3
T1Y2Y3
= (y122y3 + Y1y223)
T1Y2Y3
m

= (z2ys + Yor3) o
T1Y2Y3

yim
=5<mm- >,
T1Y2Y3

where the last equality follows since % contains only even powers of y1, 4o

and ys. O

By the result of Theorem 4.40 we know that all torsion has order 2, i.e. there
is no torsion of order 2% for k > 1 as the E>-term contains only vo-towers of
height 1. Since B(yl'y3*y4*) = 0 if and only if ji, j, and js have the same parity,
it follows that we get a Z at the top degree in each tridegree (p, q,r) if p, ¢ and r
have the same parity and otherwise we get 0. In all other degrees, the non-zero
homology groups will be various powers of Z/2 given by looking at the rank of
B in each degree. We can in fact write down a Poincaré series for the 2-torsion
given by dividing the Poincaré series of Theorem 4.2 by = + 1 (after subtracting
any term contributing a Z in homology), using that at each tridegree 3 gives an

exact sequence of Fo-vector spaces (with dimensions given by the Poincaré series

1
r+1°

of Theorem 4.2) as well as the series expansion of
Remark 4.41. Since the Bockstein spectral sequence converges to the homology
with coefficients in Z% (rather than with coefficients in Z), we are using in the
above that the homology groups with integer coefficients are finitely-generated,
which follows since these are given by the homology of the triple complex obtained
by tensoring the cellular chain complexes of Z[G]-modules for our explicit G-CW
structures on SP?', S92 and S"”® given in Section 4.2. Furthermore, we are
using that there is no p-torsion for any odd prime p, and this can be seen by
running the Bockstein spectral sequence induced by the short exact sequence
0= 7Z2% 7 — Z/p — 0 after computing the homology n¥(Xpo1+972+773 [T )
which is zero except possibly at the top degree depending on p, ¢ and r as for

example the map F, 2 [F, is an isomorphism.

Note that by the result of Theorem 4.15, for example that the G/H; level of

the positive cone in 7, HF, is given by the ring

Folyr, 22, Yo, 23, y3]
(z2y3 + yox3)
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a similar argument to the proof of Theorem 4.40 can be used to show that the
Bockstein spectral sequence on the G/H; levels for each i € {1,2,3} collapses to
the E2-page, and moreover since 3(y;) = x; and 3(x;) = 0 we see that 5 commutes
with the restriction maps. Therefore, we can in fact use the Bockstein spectral
sequence on the level of Mackey functors (together with Proposition 2.15) to help
deduce 7wy, HZ from 7, HF, in the positive cone. We claim that similar results
involving the Bockstein spectral sequence hold for the negative and mixed cones
using the algebraic descriptions from Sections 4.6 and 4.7, but we do not explore
this here. Alternatively, we can compute the homology at the top level with
integer coefficients by iteratively using the spectral sequence of a double complex
(as in Section 4.3) to compute the homology of the analogous triple complex with

integer coefficients at each tridegree (p,q,r) € Z3 as discussed in Section 4.2.

Example 4.42. Suppose that we want to compute ¢ (3201+92+293 H7) directly,
without using the Bockstein spectral sequence. That is, we want to compute the

homology of the triple complex

Z 2 Z Z
2 v \Y%
Z/V g2 1] Z’Z/
[ 7] [ 7]
Z~—|2—7 Z
2 \Y% \Y%
Z/V 72 ] ZZ/ >
\Y%
2 Z<~—|2—7 v Z
2 2 2
2/2 Z z/

As in the proof of Theorem 4.2, we will iteratively use the spectral sequence of
a double complex. In particular, we run the spectral sequence converging to the
homology with respect to d' 4 d? where we first take homology with respect to d*,
giving us the following F'-page (noting that we draw the horizontal cross sections
of the above triple complex with increasing degree in the o3-direction going left
to right):

zj2 0 Z zZ/2 0 7 zZ/2 0 7

zZ/2 0 Z o 0 Z 0o 0 Z
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Therefore, after taking homology with respect to d? we get the E%-page

zj2 0 Z/2 Z)2 0 72 Z)2 0 Z)2

Z/2 0 0 0 0 0 0 0 0

Notice that there are no higher differentials, so the spectral sequence converging
to the homology with respect to d' + d? collapses on the E2-page. Hence, since
there are no non-zero differentials in the os-direction on the above E%-page it
follows that the Poincaré series of the 2-torsion is given by 1+ 2z + 222 + 23 + 24,
which indeed is precisely what we get by dividing the Poincaré series of Theorem
4.2 at tridegree (2,1,2) by x + 1.
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